Understanding Takeoff Thrust Setting Technique
Sharing in-service events

Presented by:
Christophe LEMOZIT
Manager Flight Operations Safety Enhancement
Contents

► Standard Operating Procedures - Takeoff
► Typical turbofan engine behavior
► Lines-of-defense
► In-service events
► Prevention strategies
Contents

→ Standard Operating Procedures - Takeoff
→ Typical turbofan engine behavior
→ Lines-of-defense
→ In-service events
→ Prevention strategies
Recommended technique:

- Extract from A318/A319/A320/A321 FCOM:
 - PF progressively adjusts engine thrust in two steps:
 - from idle to about 50% N1 (1.05 EPR).
 - from both engines at similar N1 to takeoff thrust.

- Extract from A300-600 FCOM (GE engines):
 - Slightly advance throttles and monitor spool-up, until both engine are above idle (approx. 40% N1).
 - GO-LEVERS . TRIGGER

Why are two steps required, whatever the engine type?
Contents

- Standard Operating Procedures - Takeoff
- Typical turbofan engine behavior
- Lines-of-defense
- In-service events
- Prevention strategies
Typical turbofan engine behavior

Common to all engines:

- Engine acceleration depends on acceleration schedule (FF vs N2) and throttle movement
- Two types of acceleration:
 - Slow throttle movement "behind" the engine acceleration schedule:
 - Thrust is function of throttle position
 - Fast/normal throttle movement "ahead of" the engine acceleration schedule:
 - Thrust is function of the max acceleration schedule capability
Typical turbofan engine behavior

Common to all engines:

- The time to accelerate the engine up to the takeoff power depends on the initial power level
 - Acceleration from min ground idle is slow
 - Acceleration from intermediate thrust is fast

- At low power setting, engines may have different acceleration profile

- Same acceleration profiles for both engines is reached from a certain amount of thrust
Contents

→ Standard Operating Procedures - Takeoff
→ Typical turbofan engine behavior
→ Lines-of-defense
→ In-service events
→ Prevention strategies
Before moving throttles to takeoff thrust:

Throttles moved to takeoff thrust

Around a target value

Pre-set power on both engines is required
Contents

- Standard Operating Procedures - Takeoff
- Typical turbofan engine behavior
- Lines-of-defense
- In-service events
- Prevention strategies
In-service events

Threats:
- ATC pressure (expedite takeoff)
- Airport layout (taxiway/runway entry)
- Contaminated taxiway/runway

Errors:
- Thrust levers misaligned at low power
- Takeoff thrust set without pre-set power and from different low power setting
In-service events

Management:

- Rejected takeoff but too late to prevent runway excursion

A300-600 event

A320 event
Understanding Takeoff Thrust Setting Technique

Contents

- Standard Operating Procedures - Takeoff
- Typical turbofan engine behavior
- Lines-of-defense
- In-service events
- Prevention strategies
Prevention strategies

Regular communication to pilots

- Emphasize the understanding of engine response at takeoff thrust setting, particularly the requirement of setting a minimum similar N1 (or EPR) on both engines at same time, prior to setting the takeoff thrust
 - Type rating
 - Recurrent training
 - Lessons-learned shared through Airline's bulletin to all pilots, if needed
Prevention strategies

Operational and training documentation

- Possible wording enhancements:
 - A300/A310/A300-600 FCOM - Takeoff SOP (Example for GE engines):

 PF progressively adjusts engine thrust in two steps:
 - from idle to about 40% N1
 - from both engines at similar N1 to takeoff thrust, by triggering the go-levers

 Note:
 If this procedure is not properly applied, it may lead to asymmetrical thrust increase and, consequently, to severe directional control problem.

 - SA and LR FCTM:
Conclusion

✓ Whatever the engine type (FADEC or MEC), the differential thrust resulting from acceleration to takeoff power when both engines are initially at different pre-set power can be very high

✓ At low speed, this high differential thrust significantly affects aircraft lateral control capability

✓ Acceleration to pre-set N1 (EPR) is required prior setting the takeoff thrust

✓ Runway excursion may be the consequence of high differential thrust at low speed