SECTION 4

NORMAL PROCEDURES

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>GENERAL</td>
<td>4.1.1</td>
</tr>
<tr>
<td>4.2</td>
<td>AIRSPEEDS FOR NORMAL OPERATION</td>
<td>4.2.1</td>
</tr>
<tr>
<td>4.3</td>
<td>CHECK-LIST PROCEDURES</td>
<td>4.3.1</td>
</tr>
<tr>
<td></td>
<td>PREFLIGHT INSPECTION</td>
<td>4.3.1</td>
</tr>
<tr>
<td></td>
<td>BEFORE STARTING ENGINE</td>
<td>4.3.13</td>
</tr>
<tr>
<td></td>
<td>STARTING ENGINE USING AIRPLANE POWER</td>
<td>4.3.16</td>
</tr>
<tr>
<td></td>
<td>STARTING ENGINE USING EXTERNAL POWER (GPU)</td>
<td>4.3.21</td>
</tr>
<tr>
<td></td>
<td>MOTORING</td>
<td>4.3.26</td>
</tr>
<tr>
<td></td>
<td>MOTORING FOLLOWED BY AN ENGINE START</td>
<td>4.3.28</td>
</tr>
<tr>
<td></td>
<td>AFTER STARTING ENGINE</td>
<td>4.3.30</td>
</tr>
<tr>
<td></td>
<td>TAXING</td>
<td>4.3.32</td>
</tr>
<tr>
<td></td>
<td>BEFORE TAKEOFF</td>
<td>4.3.33</td>
</tr>
<tr>
<td></td>
<td>TAKEOFF</td>
<td>4.3.35</td>
</tr>
<tr>
<td></td>
<td>IN-FLIGHT AVAILABLE OXYGEN QUANTITY</td>
<td>4.3.37</td>
</tr>
<tr>
<td></td>
<td>CLIMB</td>
<td>4.3.38</td>
</tr>
<tr>
<td></td>
<td>CRUISE</td>
<td>4.3.39</td>
</tr>
<tr>
<td></td>
<td>FLAP CONTROL TRANSITION FROM “UP” TO “850”</td>
<td>4.3.40</td>
</tr>
<tr>
<td></td>
<td>FLAP CONTROL TRANSITION FROM “850” TO “UP”</td>
<td>4.3.40</td>
</tr>
<tr>
<td></td>
<td>DESCENT</td>
<td>4.3.41</td>
</tr>
<tr>
<td></td>
<td>BEFORE LANDING</td>
<td>4.3.42</td>
</tr>
<tr>
<td></td>
<td>LANDING</td>
<td>4.3.43</td>
</tr>
<tr>
<td></td>
<td>GO-AROUND</td>
<td>4.3.44</td>
</tr>
<tr>
<td></td>
<td>TOUCH AND GO</td>
<td>4.3.45</td>
</tr>
<tr>
<td></td>
<td>AFTER LANDING</td>
<td>4.3.45</td>
</tr>
<tr>
<td></td>
<td>SHUT-DOWN</td>
<td>4.3.47</td>
</tr>
<tr>
<td>4.4</td>
<td>AMPLIFIED PROCEDURES</td>
<td>4.4.1</td>
</tr>
<tr>
<td></td>
<td>PREFLIGHT INSPECTION</td>
<td>4.4.1</td>
</tr>
<tr>
<td></td>
<td>BEFORE STARTING ENGINE</td>
<td>4.4.16</td>
</tr>
<tr>
<td></td>
<td>STARTING ENGINE USING AIRPLANE POWER</td>
<td>4.4.21</td>
</tr>
<tr>
<td></td>
<td>STARTING ENGINE USING EXTERNAL POWER (GPU)</td>
<td>4.4.27</td>
</tr>
<tr>
<td></td>
<td>MOTORING</td>
<td>4.4.34</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS (Continued)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOTORING FOLLOWED BY AN ENGINE START</td>
<td>4.4.36</td>
</tr>
<tr>
<td>AFTER STARTING ENGINE</td>
<td>4.4.39</td>
</tr>
<tr>
<td>TAXIING</td>
<td>4.4.43</td>
</tr>
<tr>
<td>BEFORE TAKEOFF</td>
<td>4.4.45</td>
</tr>
<tr>
<td>TAKEOFF</td>
<td>4.4.48</td>
</tr>
<tr>
<td>IN-FLIGHT AVAILABLE OXYGEN QUANTITY</td>
<td>4.4.52</td>
</tr>
<tr>
<td>CLIMB</td>
<td>4.4.53</td>
</tr>
<tr>
<td>CRUISE</td>
<td>4.4.55</td>
</tr>
<tr>
<td>FLAP CONTROL TRANSITION FROM “UP” TO “850”</td>
<td>4.4.57</td>
</tr>
<tr>
<td>FLAP CONTROL TRANSITION FROM “850” TO “UP”</td>
<td>4.4.58</td>
</tr>
<tr>
<td>DESCENT</td>
<td>4.4.59</td>
</tr>
<tr>
<td>BEFORE LANDING</td>
<td>4.4.61</td>
</tr>
<tr>
<td>LANDING</td>
<td>4.4.63</td>
</tr>
<tr>
<td>GO-AROUND</td>
<td>4.4.64</td>
</tr>
<tr>
<td>TOUCH AND GO</td>
<td>4.4.66</td>
</tr>
<tr>
<td>AFTER LANDING</td>
<td>4.4.67</td>
</tr>
<tr>
<td>SHUT-DOWN</td>
<td>4.4.68</td>
</tr>
</tbody>
</table>

4.5 PARTICULAR PROCEDURES | 4.5.1

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIGHT INTO KNOWN ICING CONDITIONS</td>
<td>4.5.1</td>
</tr>
<tr>
<td>FLIGHT INTO SEvere ICING CONDITIONS</td>
<td>4.5.6</td>
</tr>
<tr>
<td>FLIGHT UNDER HEAVY PRECIPITATIONS</td>
<td>4.5.8</td>
</tr>
<tr>
<td>UTILIZATION ON RUNWAYS COVERED WITH WATER</td>
<td>4.5.8</td>
</tr>
<tr>
<td>UTILIZATION ON RUNWAYS COVERED WITH MELTING OR NOT TAMPED SNOW</td>
<td>4.5.9</td>
</tr>
<tr>
<td>UTILIZATION ON ICY OR COVERED WITH TAMpeed SNOW RUNWAYS</td>
<td>4.5.11</td>
</tr>
<tr>
<td>UTILIZATION BY COLD WEATHer (- 0°C to - 25°C) AND VERY COLD WEATHER (- 25°C to - 40°C)</td>
<td>4.5.13</td>
</tr>
<tr>
<td>ENVELOPE 1</td>
<td>4.5.14</td>
</tr>
<tr>
<td>ENVELOPE 2</td>
<td>4.5.16</td>
</tr>
<tr>
<td>ENVELOPE 3</td>
<td>4.5.21</td>
</tr>
<tr>
<td>LANDING PROCEDURE WITH STRONG HEADWIND OR CROSSWIND</td>
<td>4.5.23</td>
</tr>
<tr>
<td>UTILIZATION ON GRASS RUNWAY</td>
<td>4.5.25</td>
</tr>
<tr>
<td>OPERATION IN RVSM CONDITIONS</td>
<td>4.5.26</td>
</tr>
</tbody>
</table>
4.1 - GENERAL

This Section provides procedures for the conduct of normal operation of TBM 850 airplane.

The first part of this Section lists the normal procedures required as a check list.

The amplified procedures are developed in the second part of the Section.

The normal procedures for optional systems are given in Section 9, "Supplements" of the Pilot's Operating Handbook.
INTENTIONALLY LEFT BLANK
4.2 - AIRSPEEDS FOR NORMAL OPERATION

<table>
<thead>
<tr>
<th>CONDITIONS</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>- Takeoff weight</td>
<td>6579 lbs (2984 kg)</td>
<td>7394 lbs (3354 kg)</td>
</tr>
<tr>
<td>- Landing weight</td>
<td>6250 lbs (2835 kg)</td>
<td>7024 lbs (3186 kg)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>Rotation airspeed (V_R)</th>
<th>Depending on weight (See "Takeoff distances" Chapter 5.9)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Flaps TO</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>Best rate of climb speed (V_Y)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Landing gear UP, flaps UP</td>
<td>123 KIAS</td>
</tr>
</tbody>
</table>

| 3 | Best angle of climb speed (V_x) | 95 KIAS | 100 KIAS |

<table>
<thead>
<tr>
<th>4</th>
<th>Maximum speed</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Flaps TO</td>
<td>178 KIAS</td>
</tr>
<tr>
<td></td>
<td>- Flaps LDG</td>
<td>122 KIAS</td>
</tr>
</tbody>
</table>

| 5 | Maximum speed with landing gear down | 178 KIAS |

<table>
<thead>
<tr>
<th>6</th>
<th>Maximum landing gear operating speed</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Extension</td>
<td>178 KIAS</td>
</tr>
<tr>
<td></td>
<td>- Retraction</td>
<td>128 KIAS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Approach speed</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Flaps LDG</td>
<td>80 KIAS</td>
</tr>
</tbody>
</table>

| 8 | Maximum operating speed (V_{MO}) | 266 KIAS |

<table>
<thead>
<tr>
<th>9</th>
<th>Glide speed (maximum L / D ratio)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Landing gear UP, flaps UP</td>
<td>120 KIAS</td>
</tr>
</tbody>
</table>

| 10 | Maximum inertial separator operating speed | 200 KIAS | 200 KIAS |
4.3 - CHECK-LIST PROCEDURES

PREFLIGHT INSPECTION
(See Figure 4.3.1)

IMPORTANT

* During outside inspection, visually check inspection doors and airplane general condition.

* In cold weather, remove even small accumulations of frost, ice or snow from wing, tail and control surfaces.

* In case of night flight, check good operation of all navigation lights, landing lights, strobe lights and make sure that an emergency lamp is on board.

* If icing conditions are foreseen, particularly check good functioning of all electrical and pneumatic ice protection systems

* Check that type and quantity of fuel used for refueling are correct.

* Remove covers on:
 - pitots (2)
 - static ports (3)
 - engine air inlet and propeller locking (1).

* Remove tie-downs.

* Refer to Section 8 for quantities, products and specifications of products and materials currently used.
CHECK-LIST PROCEDURES

PREFLIGHT INSPECTION (Cont'd)

Figure 4.3.1 - PREFLIGHT INSPECTION
CHECK-LIST PROCEDURES

PREFLIGHT INSPECTION (Cont’d)

A - INSIDE INSPECTIONS

Cockpit

1 - CRASH lever ... UP

1 - ELECTRIC POWER panel
 - "SOURCE" selector ... OFF
 - "GENERATOR" selector MAIN

2 - ENGINE START panel
 - "IGNITION" switch ... AUTO or OFF
 - "STARTER" switch .. OFF

3 - EXT LIGHTS panel
 - All switches .. OFF

4 - GYRO INST panel
 - All switches .. OFF

5 - Breakers panel
 - All breakers .. ENGAGED

6 - DE ICE SYSTEM panel
 - All switches .. OFF

7 - Landing gear control .. DN

8 - Landing gear emergency control
 - Lever ... PULLED DOWN
 - By-pass selector .. PUSHED
 - Door .. IN PLACE

9 - "AP / TRIMS MASTER" switch OFF

10 - "RADIO MASTER" switch OFF
CHECK-LIST PROCEDURES

PREFLIGHT INSPECTION (Cont'd)

11 - ECS panel
 - "BLEED" switch ... OFF
 - "AIR COND" switch OFF
 - "DUMP" switch ... GUARDED

12 - "RAM AIR" control knob PUSHED

13 - Fuel
 - "FUEL SEL" selector MAN
 - "AUX BP" switch .. OFF
 - Tank selector ... L or R

14 - ELT .. ARM

15 - Flight control lock REMOVED / STOWED

16 - Flight controls .. Deflections checked

17 - Parking brake .. SET

18 - Engine controls
 - "MAN OVRD" control OFF (Notched)

 CAUTION
 WHEN THE ENGINE IS SHUTDOWN, THE POWER LEVER
 MUST NOT BE MOVED BEHIND THE FLIGHT IDLE
 POSITION

 - Power lever ... IDLE
 (Flight idle stop)
 - Propeller governor lever MAX. RPM
 - Condition lever CUT OFF

19 - Flaps control .. UP
CHECK-LIST PROCEDURES

PREFLIGHT INSPECTION (Cont’d)

20 - BAT BUS power supply
 - Stop watch .. CHECKED
 - Access lighting .. CHECKED
 - Emergency lighting .. CHECKED

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEFORE SELECTING SOURCE, CHECK :</td>
</tr>
<tr>
<td>21 - "IGNITION" switch AUTO or OFF</td>
</tr>
<tr>
<td>22 - "STARTER" switch OFF</td>
</tr>
<tr>
<td>23 - Landing gear control DN</td>
</tr>
</tbody>
</table>

24 - "SOURCE" selector BAT or GPU
25 - Voltage ... CHECK
 - BAT ... > 25 Volts
 - GPU ... ≈ 28 Volts

26 - EXT LIGHTS panel
 - "LTS TEST" push button PRESS
 (3 green lamps "L.LDG / TAXI / R.LDG" ON)
 - "L.LDG / TAXI / R.LDG" switches ON
 (3 green lamps ON)
 - "L.LDG / TAXI / R.LDG" switches OFF

27 - Fuel gages
 - Operation / quantity .. CHECK

28 - ADVISORY PANEL
 - Test 1 .. ALL WARNING LIGHTS ON
 - Test 2 .. ALL WARNING LIGHTS ON
29 - Oxygen emergency
 system ... WARNING LIGHT
 .. OXYGEN OFF

30 - INT LIGHTS panel ... CHECK

31 - ECS panel
 - "LT TEST" push button PRESS
 (amber indicator light ON)

32 - Flaps .. LDG

33 - Landing gear panel Warning lights : 3 GREEN ON
 Test 1, then 2 : RED ON

34 - "PITOT 1 HTR" switch WARNING LIGHT
 .. PITOT 1 OFF

35 - "PITOT 2 & STALL HTR" switch WARNING LIGHTS
 .. PITOT 2 OFF
 .. STALL HTR OFF

 "PITOT 1 HTR" switch OFF
 "PITOT 2 & STALL HTR" switch OFF

36 - DE ICE SYSTEM panel
 - "LTS TEST" push button PRESS
 (All green lights ON)

WARNING
DO NOT TOUCH PITOTS NOR STALL WARNING VANE.
THEY COULD BE HOT ENOUGH TO BURN SKIN
CHECK-LIST PROCEDURES

PREFLIGHT INSPECTION (Cont’d)

37 - EXT LIGHTS panel
 - "STROBE" ON
 - "NAV" ON
 - "ICE LIGHT" ON

 From outside the airplane, check operation of all lights and the stall warning horn

38 - Reentering the airplane
 - EXT LIGHTS panel ALL SWITCHES OFF
 - DE ICE SYSTEM panel ALL SWITCHES OFF

39 - "SOURCE" selector OFF

Cabin

1 - Cabin fire extinguisher CHECK
 (Pressure / Attachment)

2 - Seats / belts CHECK

3 - Windows ... CHECK
 (General condition / No crack)

4 - Emergency exit CLOSED / LOCKED
 - Anti-theft safety REMOVE / STOW

5 - Baggage compartment STRAPS IN PLACE

6 - Partition net IN PLACE

7 - Doors operation CHECK

8 - Stairs condition CHECK
 (Condition / Play)

Rev. 0
CHECK-LIST PROCEDURES

PREFLIGHT INSPECTION (Cont’d)

B - AIRPLANE OUTSIDE

L.H. wing (III)

1 - Flap .. CHECK
 (Condition / Play)

2 - Aileron and trim / Spoiler CHECK
 (Condition / Free movement / Deflection)

3 - Trailing edge static discharger CHECK
 (Condition / Attachment)

4 - Wing tip / nav. lights / Strobe / landing light Condition - CHECK

5 - OAT probe ... Condition - CHECK

6 - Fuel tank .. CAP CLOSED / LOCKED

7 - Fuel tank air vent Unobstructed - CHECK

8 - External pitot (IAS) Condition - CHECK

9 - Internal pitot (V\text{\textsubscript{MO}}) Condition - CHECK

10 - Wing lower surface CHECK
 (No leak)

11 - Wing deicer boots CHECK
 (Condition / Attachment)

12 - Fuel tank drain (two on each wing) DRAIN
 (Fuel free of water and contamination)
CHECK-LIST PROCEDURES

13 - L.H. main landing gear
 - Shock absorber / doors /
 tire / wheel well .. CHECK

Fuselage forward section (IV)

1 - Forward compartment
 - Inside .. CONTROLLED
 - Door .. CLOSED / LOCKED

2 - GPU door .. CLOSED
 (If not used)

3 - Fuel circuit drain ... DRAIN
 (Fuel free of water and contamination)
 - Filter contamination indicator CHECK

4 - L.H. exhaust stub ... CHECK
 (Condition / No crack)

5 - Upper engine cowls OPEN

For the first flight of the day:
 - Engine oil level ... CHECK
 - Fuel pipes ... CHECK
 (No leak, deterioration, wear)

6 - Engine cowls .. Condition - CHECK
 CLOSED / LOCKED

7 - Air inlets
 - Main ... No crack - UNOBSSTRUCTED
 - Lateral / upper ... UNOBSSTRUCTED
CHECK-LIST PROCEDURES

PREFLIGHT INSPECTION (Cont'd)

8 - Propeller and spinner ... CHECK
 (No nicks, cracks or oil leaks / Attachment)

9 - Nose gear
 - Landing light / shock absorber / doors /
 tire / wheel well ... CHECK

10 - R.H. exhaust stub ... CHECK
 (Condition / No cracks)

R.H. wing ✗

1 - Fuel tank drain (two on each wing) DRAIN
 (Fuel free of water and contamination)

2 - Main landing gear
 - Shock absorber / doors /
 tire / wheel well .. CHECK

3 - Wing deicer boots ... CHECK
 (Condition / Attachment)

4 - Stall warning .. CHECK
 (Condition / Deflection)

5 - Wing lower surface ... CHECK
 (No leaks)

6 - Fuel tank ... CAP CLOSED / LOCKED

7 - Fuel tank air vent ... Unobstructed - CHECK

8 - Wing tip / nav. light /
 strobe / landing light Condition - CHECK

9 - Trailing edge static discharger CHECK
 (Condition / Number / Attachment)
CHECK-LIST PROCEDURES

PREFLIGHT INSPECTION (Cont'd)

10 - Aileron / spoiler .. CHECK
 (Condition / Free movement / Deflection)

11 - Flap ... CHECK
 (Condition / Play)

12 - Rear R.H. karman Oxygen cylinder open

13 - Oxygen pressure ... CHECK

Fuselage rear section / Empennages

1 - ELT .. OFF

2 - Static pressure ports CLEAN - CHECK

3 - Ventral fin ... CHECK
 (Attachment condition)

4 - Inspection door under fuselage CLOSED - CHECK
 (Attachments)

5 - Horizontal stabilizer
decier boots (R.H. side) CHECK
 (Condition / Attachments)

6 - Elevator and trim CHECK
 (Condition / Deflection free movement / Trim position)

7 - Static dischargers CHECK
 (Condition)

8 - Vertical stabilizer decier boots CHECK
 (Condition / Attachments)

9 - Rudder and trim CHECK
 (Condition / Trim position)
CHECK-LIST PROCEDURES

PREFLIGHT INSPECTION (Cont’d)

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Static dischargers</td>
<td>CHECK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Condition)</td>
</tr>
<tr>
<td>11</td>
<td>Tail cone</td>
<td>Condition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- CHECK</td>
</tr>
<tr>
<td>12</td>
<td>Static pressure ports</td>
<td>Clean</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- CHECK</td>
</tr>
<tr>
<td>13</td>
<td>Rear baggage compartment</td>
<td>Controlled</td>
</tr>
<tr>
<td></td>
<td>Inside</td>
<td>CLOSED / LOCKED</td>
</tr>
<tr>
<td></td>
<td>Door</td>
<td></td>
</tr>
</tbody>
</table>
CHECK-LIST PROCEDURES

BEFORE STARTING ENGINE

CAUTION
"BLEED" SWITCH "AUTO" MAY CAUSE OVERTEMPERATURE OR ABNORMAL ACCELERATION AT START

CAUTION
MAKE SURE THAT "MAN OVRD" CONTROL IS "OFF" TO AVOID OVERTEMPERATURE RISKS AT START

1 - Preflight inspection COMPLETED
2 - Cabin access door CLOSED / LOCKED
3 - "Pilot" door (if installed) CLOSED / LOCKED
4 - Baggage STOWED
5 - Parking brake SET
6 - Weight and balance COMPUTED / CHECKED
7 - Pilot seat and R.H. front seat (if occupied)
 - Height adjustment Maximum UP
 - Fore and aft adjustment ADJUST and CHECK LOCKING
 - Height adjustment ADJUST
8 - R.H and L.H. pedals ADJUSTED
9 - Belts and harnesses (Pilot and passengers) FASTENED
10 - Oxygen supply Available for the planned flight
 (see tables of paragraph "IN-FLIGHT AVAILABLE OXYGEN QUANTITY" and Chapter 7.10 for a FAR 135 type operation)
CHECK-LIST PROCEDURES

BEFORE STARTING ENGINE (Cont’d)

11 - "OXYGEN" switch .. ON
12 - "PASSENGERS OXYGEN" switch OFF
13 - Copilot and pilot masks .. Press push-button
 "PRESS TO TEST" : the blinker shall turn red momentarily, then turns transparent
14 - "NORMAL/MASK" micro inverter NORMAL
15 - "IGNITION" switch ... AUTO or OFF
16 - "STARTER" switch ... OFF
17 - Landing gear control .. DN
18 - "RADIO MASTER" switch ON
19 - RADIO VHF1 .. ON - ADJUSTED
20 - Authorization for engine starting ASKED
21 - Fuel flow totalizer/computer CHECKED - ADJUSTED
22 - "SOURCE" selector ... BAT (or GPU)
23 - Passengers briefing .. AS REQUIRED
24 - Access door and
 (if installed) "pilot" door WARNING LIGHT DOOR OFF
25 - Fuel
 - Gages .. CHECKED
 - Tank selector .. L or R - CHECKED
 - "FUEL SEL" switch ... AUTO
 WARNING LIGHT AUTO SEL OFF
 - "SHIFT" push-button ... PRESS
 The selector changes tank
 On ground, observe a tank change every minute and 15 seconds
CHECK-LIST PROCEDURES

BEFORE STARTING ENGINE (Cont’d)

26 - Fuel flowmeter totalizer CHECKED - ADJUSTED
27 - Engine instruments CHECK
28 - ITT TEST CARRY OUT
29 - EXT LIGHTS panel
 - "STROBE" AS REQUIRED
30 - In case of night flight
 - INT LIGHTS panel : "INSTR" + "PANEL" ADJUSTED
 - Navigation lights ON
 - Flashlight (if necessary) IN PLACE
CHECK-LIST PROCEDURES

STARTING ENGINE USING AIRPLANE POWER

CAUTION
BEFORE SELECTING SOURCE, CHECK:

1 - "IGNITION" switch AUTO or OFF
2 - "STARTER" switch OFF
3 - Landing gear control DN

4 - ELECTRIC POWER panel
 - "SOURCE" selector BAT
 - Voltage CHECKED
 > 25 Volts

5 - Engine controls
 - "MAN OVRD" control OFF (Notched)

CAUTION
WHEN THE ENGINE IS SHUTDOWN, THE POWER LEVER
MUST NOT BE MOVED BEHIND THE FLIGHT IDLE
POSITION

- Power lever IDLE
 (Flight idle stop)
- Propeller governor lever MAX RPM
- Condition lever CUT OFF
CHECK-LIST PROCEDURES

STARTING ENGINE USING AIRPLANE POWER (Cont’d)

6 - FUEL panel
 - "AUX BP" switch ... ON
 WARNING LIGHT AUX BP ON ON
 WARNING LIGHT FUEL PRESS OFF
 - Fuel pressure indicator Green sector

7 - Propeller .. AREA CLEAR

8 - ENGINE START panel
 - "IGNITION" switch ... AUTO
 - "STARTER" switch ... ON
 WARNING LIGHTS STARTER FLASHTING
 WARNING LIGHTS IGNITION ON

NOTE:
The utilization of the starter is bound by limitations mentioned in Chapter 2.4 "STARTER OPERATION LIMITS".

Ng ≈ 13 %
- Condition lever .. LO / IDLE

Monitor increase of:
- ITT (max. ITT : 870°C for 20 seconds max.
 1000°C for 5 seconds max.)
- Ng
- Oil pressure WARNING LIGHT OIL PRESS OFF
CHECK-LIST PROCEDURES

STARTING ENGINE USING AIRPLANE POWER (Cont'd)

CAUTION

IF 10 SECONDS AFTER HAVING POSITIONED CONDITION LEVER TO "LO / IDLE" THERE IS NO IGNITION OR IF DURING IGNITION SEQUENCE, OVERTEMPERATURE INDICATION APPEARS (MAX. ITT : 870°C FOR MORE THAN 20 SECONDS - 1000°C FOR MORE THAN 5 SECONDS),

INTERRUPT STARTING PROCEDURE :

Condition lever ... CUT OFF
"IGNITION" switch ... OFF (or AUTO)
Wait ITT < 850°C, then :
"STARTER" switch ... OFF
BEFORE ANY RESTARTING ATTEMPT, CARRY OUT A MOTORING (Refer to paragraph "MOTORING")
CONTINUE WITH NORMAL PROCEDURE HEREAFTER

CAUTION

IF ENGINE IS SLOW TO START OR STAGNATES.

INTERRUPT STARTING PROCEDURE :

Condition lever ... CUT OFF
"IGNITION" switch ... OFF (or AUTO)
"STARTER" switch ... OFF
WAIT FOR 1 MINUTE (Refer to Chapter 2.4 "STARTER OPERATION LIMITS"), THEN TRY TO RESTART
CHECK-LIST PROCEDURES

STARTING ENGINE USING AIRPLANE POWER (Cont'd)

ENGINE START panel
- "IGNITION" switch ... AUTO
- "STARTER" switch .. ON

WARNING LIGHTS
STARTER FLASnG
IGNITION ON

Ng ≈ 13 %

- Condition lever .. HI / IDLE

Monitor increase of:
- ITT ... (max. ITT : 870°C for 20 seconds max. 1000°C for 5 seconds max.)
- Ng
- Oil pressure WARNING LIGHT

OIL PRESS OFF

Ng ≈ 50 %
- "STARTER" switch ... OFF

WARNING LIGHTS
STARTER OFF
IGNITION OFF

Engine instruments CHECK Ng increasing to 69 % (± 2 %)
(Oil pressure / ITT = green sector)

NOTE:
This behaviour should only be observed with outside low temperature (IOAT < 0°C), cold engine.
This procedure may be used for the first starting of the day.

CONTINUE WITH NORMAL PROCEDURE HEREAFTER
CHECK-LIST PROCEDURES

STARTING ENGINE USING AIRPLANE POWER (Cont'd)

9 - Condition lever ... HI / IDLE

10 - Engine instruments CHECK : Ng ≈ 69 % (± 2 %)

(Oil pressure / Oil temperature / ITT = green sector)

11 - FUEL panel
 - "AUX BP" switch ... AUTO

 WARNING LIGHT
 AUX BP ON OFF

12 - Generator WARNING LIGHT

 MAIN GEN OFF

 RESET if necessary

- Ammeter CHARGE CHECKED

- Voltmeter VOLTAGE CHECKED

(V ≈ 28 Volts)
STARTING ENGINE USING EXTERNAL POWER (GPU)

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GPU connected</td>
</tr>
<tr>
<td>2</td>
<td>"SOURCE" selector to GPU</td>
</tr>
<tr>
<td></td>
<td>WARNING LIGHT ON</td>
</tr>
<tr>
<td></td>
<td>VOLTAGE CHECKED (V \approx 28) Volts</td>
</tr>
<tr>
<td>3</td>
<td>Engine controls</td>
</tr>
<tr>
<td></td>
<td>"MAN OVRD" control OFF (Notched)</td>
</tr>
</tbody>
</table>

CAUTION

WHEN THE ENGINE IS SHUTDOWN, THE POWER LEVER MUST NOT BE MOVED BEHIND THE FLIGHT IDLE POSITION

- Power lever IDLE (Flight idle stop) |
- Propeller governor lever MAX RPM |
- Condition lever CUT OFF

Rev. 0
Page 4.3.21
CHECK-LIST PROCEDURES

STARTING ENGINE USING EXTERNAL POWER (GPU) (Cont’d)

4 - FUEL panel
 - “AUX BP” switch .. ON

 WARNING LIGHTS
 - AUX BP ON ... ON
 - FUEL PRESS .. OFF

 - Fuel pressure indicator CHECK

5 - Propeller ... AREA CLEAR

6 - ENGINE START panel
 - “IGNITION” switch ... AUTO
 - “STARTER” switch ... ON

 WARNING LIGHTS
 - STARTER ... FLAShING
 - IGNITION .. ON

NOTE:
The utilization of the starter is bound by limitations mentioned in Chapter 2.4 "STARTER OPERATION LIMITS”.

Ng \(\approx 13\%\)
 - Condition lever ... LO / IDLE

Monitor increase of:
 - ITT (max. ITT : 870°C for 20 seconds max.
 1000°C for 5 seconds max.)
 - Ng
 - Oil pressure WARNING LIGHT OIL PRESS OFF
CHECK-LIST PROCEDURES

STARTING ENGINE USING EXTERNAL POWER (GPU) (Cont'd)

CAUTION

IF 10 SECONDS AFTER HAVING POSITIONED CONDITION LEVER TO "LO / IDLE" THERE IS NO IGNITION OR IF DURING IGNITION SEQUENCE, OVERTemperature INDICATION APPEARS (MAX. ITT: 870°C FOR MORE THAN 20 SECONDS - 1000°C FOR MORE THAN 5 SECONDS),

INTERRUPT STARTING PROCEDURE:

Condition lever CUT OFF
"IGNITION" switch OFF (or AUTO)
Wait ITT < 850°C, then:
"STARTER" switch OFF
BEFORE ANY RESTARTING ATTEMPT, CARRY OUT A MOTORING (Refer to paragraph "MOTORING")
CONTINUE WITH NORMAL PROCEDURE HEREAFTER

CAUTION

IF ENGINE IS SLOW TO START OR STAGNATES.

INTERRUPT STARTING PROCEDURE:

Condition lever CUT OFF
"IGNITION" switch OFF (or AUTO)
"STARTER" switch OFF
WAIT FOR 1 MINUTE (Refer to Chapter 2.4 "STARTER OPERATION LIMITS"), THEN TRY TO RESTART
CHECK-LIST PROCEDURES

STARTING ENGINE USING EXTERNAL POWER (GPU) (Cont’d)

ENGINE START panel
- "IGNITION" switch .. AUTO
- "STARTER" switch .. ON

WARNING LIGHTS
- STATER FLASING
- IGNITION ON

Ng ≈ 13 %
- Condition lever ... HI / IDLE

Monitor increase of:
- ITT .. (max. ITT : 870°C for 20 seconds max. 1000°C for 5 seconds max.)
- Ng
- Oil pressure WARNING LIGHT

Ng ≈ 50 %
- "STARTER" switch .. OFF

WARNING LIGHTS
- STATER OFF
- IGNITION OFF

Engine instruments CHECK Ng increasing to 69 % (± 2 %)
(Oil pressure / ITT = green sector)

NOTE:
This behaviour should only be observed with outside low temperature (IOAT < 0 °C), cold engine. This procedure may be used for the first starting of the day.

CONTINUE WITH NORMAL PROCEDURE HEREAFTER
CHECK-LIST PROCEDURES

STARTING ENGINE USING EXTERNAL POWER (GPU) (Cont’d)

7 - "SOURCE" selector .. BAT
 WARNING LIGHT ... BAT OFF
 OFF

8 - Propeller governor lever FEATHER

9 - GPU ... HAVE IT DISCONNECTED
 WARNING LIGHT .. GPU OFF

10 - Condition lever HI / IDLE

11 - Propeller governor lever MAX. RPM

12 - Engine instruments CHECK : Ng ≈ 69 % (± 2 %)
 (Oil pressure / Oil temperature / ITT = green sector)

13 - FUEL panel
 - "AUX BP" switch AUTO
 WARNING LIGHT AUX BP ON
 OFF

14 - Generator .. WARNING LIGHT
 MAIN GEN ... OFF
 RESET if necessary
 - Ammeter ... CHARGE CHECKED
 - Voltmeter VOLTAGE CHECKED
 (V ≈ 28 Volts)
CHECK-LIST PROCEDURES

MOTORING

CAUTION

AFTER ANY STARTING INTERRUPT PROCEDURE:
- WAIT FOR ENGINE TOTAL SHUT-DOWN
- WAIT AT LEAST 30 SECONDS BEFORE INITIATING A MOTORING

1 - Engine controls
 - "MAN OVRD" control OFF (Notched)

CAUTION

WHEN THE ENGINE IS SHUTDOWN, THE POWER LEVER MUST NOT BE MOVED BEHIND THE FLIGHT IDLE POSITION

- Power lever ... IDLE
 (Flight idle stop)
- Propeller governor lever MAX. RPM
- Condition lever CUT OFF

2 - Fuel
 - Tank selector L or R
 - "AUX BP" switch ON

WARNING LIGHTS

AUX BP ON ON
FUEL PRESS OFF
CHECK-LIST PROCEDURES

MOTORING (Cont'd)

3 - "IGNITION" switch ... OFF

WARNING LIGHT IGNITION OFF

4 - "STARTER" switch ... ON during 15 sec maxi

WARNING LIGHT STARTER FLASHING

5 - "STARTER" switch ... OFF

WARNING LIGHT STARTER OFF

6 - FUEL panel
 - "AUX BP" switch ... OFF

WARNING LIGHTS AUX BP ON OFF

 FUEL PRESS ON
CHECK-LIST PROCEDURES

MOTORING FOLLOWED BY AN ENGINE START

Within starter operating limits (continuous max. 1 minute), it is possible to initiate a starting procedure from a motoring procedure.

1 - Engine controls
 - "MAN OVRD" control OFF (Notched)

CAUTION
WHEN THE ENGINE IS SHUTDOWN, THE POWER LEVER MUST NOT BE MOVED BEHIND THE FLIGHT IDLE POSITION

- Power lever .. IDLE
 (Flight idle stop)
- Propeller governor lever MAX. RPM
- Condition lever CUT OFF

2 - Fuel
 - Tank selector ... L or R
 - "AUX BP" switch ... ON

WARNING LIGHTS

AUX BP ON ON
FUEL PRESS OFF

3 - "IGNITION" switch OFF

4 - "STARTER" switch ON during 15 sec
CHECK-LIST PROCEDURES

MOTORING FOLLOWED BY AN ENGINE START (Cont'd)

5 - After 15 seconds:
 - "IGNITION" switch ... AUTO
 - Ng ... Check at 13 % minimum
 - Condition lever .. LO / IDLE

6 - Monitor increase of:
 - ITT (max. ITT: 870°C for 20 seconds max.
 1000°C for 5 seconds max.)
 - Ng
 - Oil pressure WARNING LIGHT
 Ng ≈ 50 % stable
 - "STARTER" switch ... OFF

7 - Engine instruments CHECK : Ng > 52 %
 (Oil pressure / ITT = green sector)

8 - Condition lever .. HI / IDLE

9 - Engine instruments CHECK : Ng ≈ 69 % (± 2 %)
 (Oil pressure / Oil temperature / ITT = green sector)

10 - FUEL panel
 - "AUX BP" switch .. AUTO

11 - Generator WARNING LIGHT
 - Ammeter .. CHARGE CHECKED
 - Voltmeter ... VOLTAGE CHECKED
 (V ≈ 28 Volts)

REV. 0
CHECK-LIST PROCEDURES

AFTER STARTING ENGINE

1 - GYRO INST panel
 - All switches ... ON
 Pull on the caging knobs when starting the ADI(s).

2 - Gyroscopic suction gage indicator GREEN SECTOR

 WARNING LIGHT .. VACUUM LO OFF

3 - GYRO SLAVING selector SLAVE

4 - DE ICE SYSTEM panel
 - "PROP DE ICE" switch ON
 Check illumination of the green light located above the switch
 - "PROP DE ICE" switch OFF
 - "L.WINDSHIELD" switch ON
 - "R.WINDSHIELD" switch ON
 Check illumination of the green light located above the switch (except if hot conditions)
 - "L.WINDSHIELD" switch OFF
 - "R.WINDSHIELD" switch OFF

Increase power so as to get Ng ≥ 80% to check AIRFRAME DE ICE

 - "AIRFRAME DE ICE" switch ON
 Visually check functioning of deicer boots during 1 total cycle and illumination of the two green lights located above the switch
 - "AIRFRAME DE ICE" switch OFF
 - "INERT SEP" switch ON

 WARNING LIGHT .. INERT SEP ON

 after 30 seconds

Page 4.3.30
5 - "GENERATOR" selector
 - On "MAIN" Voltage and current checked
 when current ≤ 50 amps :
 - on "ST-BY" Voltage and current checked
 (reset if necessary)
 - then again on "MAIN"

6 - Flaps .. UP

WARNING

IT IS PROHIBITED TO SET FLAPS CONTROL LEVER TO
"850" POSITION ON GROUND AND FOR TAKEOFF

7 - ECS panel
 - "BLEED" switch AUTO
 - "FAN FLOW" switch As required
 - "AIR COND" switch ON
 - "CABIN TEMP/°C" selector ADJUST
 - "AIR FLOW" distributor AS REQUIRED
 Cabin altitude selector Airfield altitude - 500 feet
 Cabin rate selector ARROW UPWARDS
 (at the halfway post)

8 - "RADIO MASTER" switch ON
 - VHF/VOR/GPS/TAS/
 EGPWS/WX means (if installed) ADJUSTED - TESTED

9 - "EFIS MASTER" switch ON
 - "TEST / CMPST" button PRESS
 - "TST / REF" button PRESS at least 3 seconds

10 - "AP / TRIMS MASTER" switch ON
 - Preflight test button PRESS
 - "AP / TRIMS MASTER" operation CHECK
 - Pitch trim UP / DN, then ADJUSTED
 - Yaw trim L / R, then ADJUSTED
 - Roll trim L / R, then ADJUSTED
CHECK-LIST PROCEDURES

TAXIING

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>"TAXI" light</td>
<td>ON</td>
</tr>
<tr>
<td>2</td>
<td>"INERT SEP" switch</td>
<td>CHECKED ON</td>
</tr>
<tr>
<td></td>
<td>CHECK WARNING LIGHT</td>
<td>INERT SEP ON</td>
</tr>
<tr>
<td>3</td>
<td>Passenger briefing</td>
<td>AS REQUIRED</td>
</tr>
<tr>
<td>4</td>
<td>Parking brake</td>
<td>RELEASED</td>
</tr>
<tr>
<td></td>
<td>WARNING LIGHT</td>
<td>PARK BRAKE OFF</td>
</tr>
<tr>
<td>5</td>
<td>L.H. and R.H. seats brakes</td>
<td>CHECKED</td>
</tr>
<tr>
<td>6</td>
<td>Nose wheel steering</td>
<td>CHECKED</td>
</tr>
<tr>
<td>7</td>
<td>Power lever</td>
<td>AS REQUIRED</td>
</tr>
</tbody>
</table>

CAUTION

AVOID USING REVERSE DURING TAXIING

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Flight instruments</td>
<td>CHECK</td>
</tr>
<tr>
<td>9</td>
<td>Advisory panel</td>
<td>CHECK</td>
</tr>
</tbody>
</table>
CHECK-LIST PROCEDURES

BEFORE TAKEOFF

1 - Parking brake ... SET
 WARNING LIGHT PARK BRAKE ON

2 - Condition lever ... HI / IDLE
 [Ng : 68 % (± 2 %)]

3 - Propeller governor lever FEATHER twice, then MAX. RPM

4 - Fuel
 - Gages ... CHECK
 (Quantity / Symmetry)
 - "FUEL SEL” ... CHECK AUTO
 - "AUX BP” .. CHECK AUTO

5 - Flaps .. TO

6 - DE ICE SYSTEM panel
 - "AIRFRAME DE ICE” switch As required
 - "PROP DE ICE” switch As required

If runway is in good condition, without icing conditions:
 - "INERT SEP” switch OFF
 WARNING LIGHT INERT SEP OFF

If there is standing water or other contamination on the runway:
 - "INERT SEP” switch Leave ON
 WARNING LIGHT INERT SEP ON
 - "L.WINDSHIELD” switch As required
 - "R.WINDSHIELD” switch As required
CHECK-LIST PROCEDURES

BEFORE TAKEOFF (Cont'd)

- "PITOT 1 HTR" switch ... ON
- "PITOT 2 & STALL HTR" switch ON

7 - Advisory panel .. CHECK
 All warning lights OFF,
 except PARK BRAKE ON
 and, if used INERT SEP ON

8 - Electronic equipment /
 Flight instruments / Radar (if installed) CHECK / ADJUST

9 - Engine instruments ... CHECK

10 - Pilot's / Passengers' belts CHECK

11 - Flight controls .. DEFLECTIONS CHECKED

12 - Trims
 - Pitch ... ADJUSTED
 - Yaw ... ADJUSTED
 - Roll ... ADJUSTED

13 - Parking brake .. RELEASED
 WARNING LIGHT PARK BRAKE OFF

14 - "STROBE" switch .. ON

CAUTION

DO NOT TAKE OFF IF BATTERY CHARGE > 50 Amperes
CHECK-LIST PROCEDURES

TAKEOFF

WHEN LINED UP

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CAUTION</td>
<td></td>
</tr>
<tr>
<td>- IF HEAVY PRECIPITATION, TURN IGNITION AND INERT SEP ON.</td>
<td></td>
</tr>
<tr>
<td>- IF ICING CONDITIONS ARE FORESEEN, REFER TO CHAPTER 4.5, PARAGRAPH "FLIGHT INTO KNOWN ICING CONDITIONS"</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CHECK</td>
<td></td>
</tr>
<tr>
<td>- Heading - HSI - Stand-by compass</td>
<td></td>
</tr>
<tr>
<td>- Altimeter setting</td>
<td></td>
</tr>
<tr>
<td>CHECK</td>
<td></td>
</tr>
<tr>
<td>Attitude + 2°</td>
<td></td>
</tr>
<tr>
<td>CHECK</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td></td>
</tr>
<tr>
<td>- "L.LDG / TAXI / R.LDG"</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CHECK</td>
<td></td>
</tr>
<tr>
<td>(ITT = green sector)</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CHECK</td>
<td></td>
</tr>
<tr>
<td>- Advisory panel</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL WARNING LIGHTS OFF,</td>
<td></td>
</tr>
<tr>
<td>EXCEPT</td>
<td></td>
</tr>
<tr>
<td>INERT SEP</td>
<td>if used</td>
</tr>
<tr>
<td>EXCEPT</td>
<td></td>
</tr>
<tr>
<td>IGNITION</td>
<td>if used</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AS REQUIRED</td>
<td></td>
</tr>
<tr>
<td>- Radar switch (if installed)</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TEST : MAINTAIN ENGAGED</td>
<td></td>
</tr>
<tr>
<td>- PROP O’ SPEED</td>
<td></td>
</tr>
<tr>
<td>TEST : RELEASE</td>
<td></td>
</tr>
<tr>
<td>- PROP O’ SPEED</td>
<td></td>
</tr>
<tr>
<td>- Check that propeller RPM increases again up to 1900 RPM</td>
<td></td>
</tr>
</tbody>
</table>
CHECK-LIST PROCEDURES

TAKEOFF (Cont'd)

8 - Brakes ... RELEASED

9 - Power lever TRQ = 100 %

10 - Takeoff ROTATION : See "Takeoff
distances" Chapter 5.9
 - Normal takeoff ATTITUDE : 7°5
 - Short takeoff
 . Weight < 6579 lbs (2984 kg) ATTITUDE : 15°
 . Weight > 6579 lbs (2984 kg) ATTITUDE : 12°5

11 - Vertical speed indicator POSITIVE

12 - Brakes ... APPLY
 (Briefly)

13 - Landing gear control (IAS < 128 KIAS) UP
 At sequence end, check : All warning lights OFF

14 - Initial climb speed Weight < 6579 lbs (2984 kg) : 110 KIAS
 Weight > 6579 lbs (2984 kg) : 115 KIAS

15 - Flaps .. UP

16 - Flap control Only when flaps are confirmed UP
 850

17 - Power lever TRQ =121.4 %

18 - Climb speed (recommended) 130 KIAS

19 - "YAW DAMPER" push-button ON

20 - Lights
 - "TAXI" OFF
 - "L.LDG / R.LDG" AS REQUIRED
CHECK-LIST PROCEDURES

IN-FLIGHT AVAILABLE OXYGEN QUANTITY

Oxygen pressure ... Read
Outside air temperature (IOAT) Read

1 - Determine the usable oxygen percent using the chart Figure 4.3.2.

![Graph showing oxygen pressure and usable oxygen percent]

Figure 4.3.2

2 - Determine the oxygen duration in minutes by multiplying the values read on table Figure 4.3.3 by the percent obtained with the chart Figure 4.3.2.

<table>
<thead>
<tr>
<th>Number of passengers</th>
<th>Duration: Passengers, plus 1 pilot</th>
<th>Duration: Passengers, plus 2 pilots</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>226</td>
<td>113</td>
</tr>
<tr>
<td>1</td>
<td>162</td>
<td>94</td>
</tr>
<tr>
<td>2</td>
<td>127</td>
<td>81</td>
</tr>
<tr>
<td>3</td>
<td>104</td>
<td>71</td>
</tr>
<tr>
<td>4</td>
<td>88</td>
<td>65</td>
</tr>
</tbody>
</table>

Figure 4.3.3
CHECK-LIST PROCEDURES

CLIMB

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Power lever</td>
<td>ADJUST according to engine operation tables - Chapter 5.8</td>
</tr>
<tr>
<td>2</td>
<td>Climb speed</td>
<td>AS REQUIRED</td>
</tr>
</tbody>
</table>
| 3 | ECS panel | Cruise altitude + 1000 feet
- Cabin altitude selector
- Cabin rate selector
- Pressurization
- "CABIN TEMP/"C" selector | ADJUST
CHECK
ADJUST |
| 4 | Fuel tank gages | CHECK / CORRECT (Quantity / Symmetry) |
| 5 | DE ICE SYSTEM | As required
Refer to Chapter 4.5
"PARTICULAR PROCEDURES" |

CAUTION

- IF HEAVY PRECIPITATION, TURN IGNITION AND INERT SEP ON
CRUISE

1 - Power lever ADJUST according to engine operation tables - Chapter 5.8

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBSERVE TRQ / Ng / Np / ITT / T° AND OIL PRESSURE LIMITATIONS (Refer to tables in Chapter 5.8)</td>
</tr>
</tbody>
</table>

2 - Pressurization CHECK

3 - Fuel
 - Gages CHECK
 - REGULARLY CHECK:
 - consumption
 - tank automatic change (every 10 minutes)
 - symmetry [max. dissymmetry 15 us gal (57 Litres)]

4 - Cruise parameters / engine data CHECK/RECORD

5 - DE ICE SYSTEM As required
 - Refer to Chapter 4.5
 - "PARTICULAR PROCEDURES”

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>IF HEAVY PRECIPITATION, TURN IGNITION AND INERT SEP ON</td>
</tr>
</tbody>
</table>
FLAP CONTROL TRANSITION FROM “UP” TO “850”

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - Flaps</td>
<td>CHECKED UP</td>
</tr>
<tr>
<td>2 - Propeller RPM</td>
<td>2000</td>
</tr>
<tr>
<td>3 - Power lever</td>
<td>TRQ less than 100%</td>
</tr>
<tr>
<td>4 - Flap control lever</td>
<td>From UP to 850</td>
</tr>
<tr>
<td>5 - Power lever</td>
<td>As required</td>
</tr>
<tr>
<td></td>
<td>TRQ less than 121.4%</td>
</tr>
</tbody>
</table>

FLAP CONTROL TRANSITION FROM “850” TO “UP”

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - Altitude</td>
<td>At or above 1500 ft AGL</td>
</tr>
<tr>
<td>2 - Propeller RPM</td>
<td>2000</td>
</tr>
<tr>
<td>3 - Power lever</td>
<td>TRQ less than 100%</td>
</tr>
<tr>
<td>4 - Flap control lever</td>
<td>From 850 to UP</td>
</tr>
<tr>
<td>5 - Power lever</td>
<td>As required</td>
</tr>
<tr>
<td></td>
<td>TRQ less than 100% (2000 RPM)</td>
</tr>
</tbody>
</table>
CHECK-LIST PROCEDURES

DESCENT

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Altimeter settings</td>
</tr>
<tr>
<td>2</td>
<td>ECS panel</td>
</tr>
<tr>
<td></td>
<td>- Cabin altitude selector</td>
</tr>
<tr>
<td></td>
<td>- Cabin rate selector</td>
</tr>
<tr>
<td>3</td>
<td>DE ICE SYSTEM</td>
</tr>
<tr>
<td></td>
<td>Refer to Chapter 4.5</td>
</tr>
<tr>
<td></td>
<td>"PARTICULAR PROCEDURES"</td>
</tr>
</tbody>
</table>

CAUTION

IF HEAVY PRECIPITATION, TURN IGNITION AND INERT SEP ON

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Windshield misting protection system</td>
</tr>
<tr>
<td>5</td>
<td>Fuel</td>
</tr>
<tr>
<td></td>
<td>- Gages</td>
</tr>
<tr>
<td></td>
<td>- Fullest tank</td>
</tr>
<tr>
<td>6</td>
<td>Passengers briefing</td>
</tr>
<tr>
<td>7</td>
<td>Seats, belts and harnesses</td>
</tr>
</tbody>
</table>
CHECK-LIST PROCEDURES

BEFORE LANDING

Long final

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Altimeters</td>
<td>CHECK</td>
</tr>
<tr>
<td>2</td>
<td>Fuel</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Gages</td>
<td>CHECK</td>
</tr>
<tr>
<td></td>
<td>(Quantity / Symmetry)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Fullest tank</td>
<td>SELECT</td>
</tr>
<tr>
<td>3</td>
<td>"INERT SEP" switch</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td>(IAS ≤ 200 KIAS)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Propeller lever</td>
<td>MAX RPM</td>
</tr>
<tr>
<td>5</td>
<td>Landing gear control</td>
<td>DN</td>
</tr>
<tr>
<td></td>
<td>(IAS ≤ 178 KIAS)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Green warning lights</td>
<td>ON</td>
</tr>
<tr>
<td>6</td>
<td>Flaps</td>
<td>TO</td>
</tr>
<tr>
<td></td>
<td>(IAS ≤ 178 KIAS)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Lights</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- "L.LDG / TAXI / R.LDG"</td>
<td>ON</td>
</tr>
<tr>
<td>8</td>
<td>Autopilot</td>
<td>OFF</td>
</tr>
<tr>
<td>9</td>
<td>Radar switch (if installed)</td>
<td>SBY</td>
</tr>
</tbody>
</table>

Short final

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Flaps</td>
<td>LDG</td>
</tr>
<tr>
<td></td>
<td>(IAS ≤ 122 KIAS)</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Approach speed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Flaps LDG)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Weight < 6250 lbs (2835 kg)</td>
<td>80 KIAS</td>
</tr>
<tr>
<td></td>
<td>Weight > 6250 lbs (2835 kg)</td>
<td>85 KIAS</td>
</tr>
<tr>
<td>12</td>
<td>"YAW DAMPER" push–button</td>
<td>OFF</td>
</tr>
</tbody>
</table>
CHECK-LIST PROCEDURES

<table>
<thead>
<tr>
<th>LANDNG</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - Power lever IDLE</td>
</tr>
<tr>
<td>After wheel touch</td>
</tr>
<tr>
<td>2 - Reverse As required</td>
</tr>
<tr>
<td>(Reverse may be applied as soon as the wheels touch the ground.) To avoid ingestion of foreign objects, come out the reverse as speed reduces and use the brakes if necessary for further deceleration.</td>
</tr>
</tbody>
</table>

CAUTION

USE OF CONTROL REVERSE BETA (β) RANGE (BEHIND THE FLIGHT IDLE POSITION) IS PROHIBITED DURING FLIGHT

CAUTION

ON SNOWY OR DIRTY RUNWAY, IT IS BETTER NOT TO USE REVERSE

| 3 - Brakes As required |
CHECK-LIST PROCEDURES

GO-AROUND

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Simultaneously</td>
</tr>
<tr>
<td></td>
<td>- Power lever TRQ = 100 %</td>
</tr>
<tr>
<td></td>
<td>- Attitude 7°5</td>
</tr>
<tr>
<td>2</td>
<td>Flaps TO</td>
</tr>
</tbody>
</table>

Weight below 6579 lbs (2984 kg)

If the vertical speed is positive and if IAS is at or above 85 KIAS:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Landing gear control UP</td>
</tr>
<tr>
<td></td>
<td>All warning lights OFF</td>
</tr>
</tbody>
</table>

If IAS is at or above 110 KIAS:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Flaps UP</td>
</tr>
<tr>
<td>5</td>
<td>Climb speed AS REQUIRED</td>
</tr>
</tbody>
</table>

Weight above 6579 lbs (2984 kg)

If the vertical speed is positive and if IAS is at or above 90 KIAS:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Landing gear control UP</td>
</tr>
<tr>
<td></td>
<td>All warning lights OFF</td>
</tr>
</tbody>
</table>

If IAS is at or above 115 KIAS:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Flaps UP</td>
</tr>
<tr>
<td>8</td>
<td>Climb speed AS REQUIRED</td>
</tr>
<tr>
<td>9</td>
<td>Power AS REQUIRED</td>
</tr>
</tbody>
</table>
TOUCH AND GO

After wheel touch

- Flaps .. TO
- Elevator trim .. Green sector
- Power lever .. Display TRQ = 100 %
- Takeoff .. ROTATION: See "Takeoff distances" Chapter 5.9
 - Normal takeoff ATTITUDE: 7° 5
 - Short takeoff
 - Weight < 6579 lbs (2984 kg) ATTITUDE: 15°
 - Weight > 6579 lbs (2984 kg) ATTITUDE: 12° 5

AFTER LANDING

RUNWAY CLEAR - AIRPLANE STOPPED

1 - DE ICE SYSTEM panel
 - "AIRFRAME DE ICE" switch OFF
 - "PROP DE ICE" switch OFF
 - "INERT SEP" switch CHECKED ON
 - "L.WINDSHIELD" switch As required
 - "R.WINDSHIELD" switch As required
 - "PITOT 1 HTR" switch OFF
 - "PITOT 2 & STALL HTR" switch OFF
2 - Radar switch (if installed) CHECKED SBY
3 - Transponder SBY
4 - Flaps ... UP
CHECK-LIST PROCEDURES

AFTER LANDING (Cont'd)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Lights</td>
</tr>
<tr>
<td></td>
<td>"L.LDG / R.LDG"</td>
</tr>
<tr>
<td></td>
<td>"TAXI"</td>
</tr>
<tr>
<td>6</td>
<td>"STROBE" switch</td>
</tr>
<tr>
<td>7</td>
<td>"OXYGEN" switch</td>
</tr>
</tbody>
</table>
SHUT-DOWN

1. Parking brake .. SET
 WARNING LIGHT PARK BRAKE ON
2. "TAXI" light .. OFF
3. Pressurization
 - "BLEED" switch OFF
 - Check for cabin depressurization
4. "FAN FLOW" switch As required
5. "AIR COND" switch OFF
6. Power lever ... IDLE
 - Wait for 1 min minimum after ITT is stabilized
7. GYRO INST panel
 - All switches .. OFF
8. "EFIS MASTER" switch OFF
9. "AP / TRIMS MASTER" switch OFF
10. "RADIO MASTER" switch OFF
11. Propeller governor lever FEATHER
12. Condition lever CUT OFF

CAUTION

IN CASE OF SHUT-DOWN ON A CONTAMINATED AREA:

- Condition lever .. CUT OFF
- Propeller governor lever FEATHER
CHECK-LIST PROCEDURES

SHUT-DOWN (Cont’d)

<table>
<thead>
<tr>
<th>13</th>
<th>Fuel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>"AUX BP" switch</td>
</tr>
<tr>
<td></td>
<td>"FUEL SEL" switch</td>
</tr>
<tr>
<td></td>
<td>Tank selector</td>
</tr>
</tbody>
</table>

| 14 | "INERT SEP" switch | OFF |

<table>
<thead>
<tr>
<th>15</th>
<th>INT LIGHTS panel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All switches</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16</th>
<th>EXT LIGHTS panel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All switches</td>
</tr>
</tbody>
</table>

| 17 | "GENERATOR" selector | MAIN |

| 18 | "SOURCE" selector | OFF |
4.4 - AMPLIFIED PROCEDURES

PREFLIGHT INSPECTION

A - INSIDE INSPECTIONS

Cockpit

- CRASH lever .. UP

1 - ELECTRIC POWER panel
- "SOURCE" selector OFF
- "GENERATOR" selector MAIN

2 - ENGINE START panel
- "IGNITION" switch AUTO or OFF
 The "IGNITION" switch is normally selected to AUTO. This ensures ignition, whenever the "STARTER" switch is set to ON.
- "STARTER" switch OFF
 If not, starter is going to operate as soon as "SOURCE" selector is moved to BAT or GPU (if connected).

3 - EXT LIGHTS panel
- All switches OFF

4 - GYRO INST panel
- All switches OFF

5 - Breakers panel
- All breakers ENGAGED

6 - DE ICE SYSTEM panel
- All switches OFF

7 - Landing gear control DN
AMPLIFIED PROCEDURES

8 - Landing gear emergency control
 Open door of emergency landing gear compartment.
 - Lever ... PULLED DOWN
 - By-pass selector PUSHED
 - Door .. IN PLACE
 By-pass selector must be pushed at its maximum stop, so as to
 have the door in place.

9 - "AP / TRIMS MASTER" switch OFF

10 - "RADIO MASTER" switch OFF

11 - ECS panel
 - "BLEED" switch OFF
 - "AIR COND" switch OFF
 - "DUMP" switch GUARDED

12 - RAM AIR control PUSHED

13 - Fuel
 - "FUEL SEL" selector MAN
 - "AUX BP" switch OFF
 - Tank selector L or R

14 - ELT ... ARM

15 - Flight control lock REMOVED / STOWED
 The flight control lock is normally stowed in the front cargo
 compartment with the towing bar and the blanking covers.

16 - Flight controls Deflections checked

17 - Parking brake SET

18 - Engine controls
 - "MAN OVRD" control OFF (Notched)
AMPLIFIED PROCEDURES

PREFLIGHT INSPECTION (Cont’d)

CAUTION

WHEN THE ENGINE IS SHUTDOWN, THE POWER LEVER MUST NOT BE MOVED BEHIND THE FLIGHT IDLE POSITION

When engine is shut-off, a lack of hydraulic pressure prevents movement into reverse range. Trying to force the mechanism will cause damage.

- Power lever IDLE
 (Flight idle stop)
- Propeller governor lever MAX. RPM
- Condition lever CUT OFF

19 - Flaps control UP

20 - BAT BUS power supply
 - Stop watch CHECKED
 - Access lighting CHECKED
 - Emergency lighting CHECKED

This check allows to ensure that the fuse of the “BAT BUS” operates correctly.

CAUTION

BEFORE SELECTING SOURCE, CHECK:

21 - "IGNITION" switch AUTO or OFF
22 - "STARTER" switch OFF
23 - Landing gear control DN

24 - "SOURCE" selector BAT or GPU
AMPLIFIED PROCEDURES

PREFLIGHT INSPECTION (Cont’d)

25 - Voltage ... CHECK
 - BAT ... > 25 Volts
 If not, use a GPU or charge battery. This minimum voltage is not an absolute guarantee for a correctly charged battery. It is recommended to use a GPU in cold weather, when airplane has been stopped more than 3 hours at a temperature below - 10°C (+14°F).
 - GPU ... ~ 28 Volts
 If using a GPU, ensure that it provides a 28-volt regulated voltage, with negative on earth, as well as it supplies 800 amperes minimum and 1400 amperes maximum. See placard located near ground power receptacle door.

26 - EXT LIGHTS panel
 - "LTS TEST” push button PRESS
 (3 green lamps ”L.LDG / TAXI / R.LDG” ON)
 - "L.LDG / TAXI / R.LDG” switches ON
 (3 green lamps ON)
 An outside inspection is not necessary; the illuminated three green lamps located on switches prove the correct operation of the three landing lights.
 - "L.LDG / TAXI / R.LDG” switches OFF

27 - Fuel gages
 - Operation / quantity CHECK

28 - ADVISORY PANEL
 - Test 1 ... ALL WARNING LIGHTS ON
 - Test 2 ... ALL WARNING LIGHTS ON
 ”Test 1” and ”2” correspond to BUS bars 1 or 2, which feed them respectively.
AMPLIFIED PROCEDURES

PREFLIGHT INSPECTION (Cont'd)

29 - Oxygen emergency

system WARNING LIGHT OXYGEN OFF

If not, open isolation valve of the oxygen cylinder in R.H. karman. Oxygen emergency system in good operation condition must be imperatively taken on board during all flights, even at low altitude in order to be used in case of smoke in the cabin.

30 - INT LIGHTS panel ... CHECK

31 - ECS panel
- "LT TEST" push button PRESS (amber indicator light ON)

32 - Flaps .. LDG

33 - Landing gear panel Warning lights : 3 GREEN ON Test 1, then 2 : RED ON

"Test 1" and "2" correspond to BUS bars 1 or 2, which feed them respectively.

34 - "PITOT 1 HTR" switch ... ON

WARNING LIGHT PITOT 1 OFF

Correct operation of pitot (PITOT 1 and 2) tube heating elements and of stall aural warning system (STALL HTR) is indicated by extinction of corresponding lights on the advisory panel, when control switches are ON.
AMPLIFIED PROCEDURES

PREFLIGHT INSPECTION (Cont’d)

35 - “PITOT 2 & STALL HTR” switch ON

 WARNING LIGHTS
 PITOT 2 OFF
 STALL HTR

- “PITOT 1 HTR” switch .. OFF
- “PITOT 2 & STALL HTR” switch OFF

36 - DE ICE SYSTEM panel
 - "LTS TEST" push button PRESS
 (All green lights ON)

WARNING

DO NOT TOUCH PITOTS NOR STALL WARNING VANE.
THEY COULD BE HOT ENOUGH TO BURN SKIN

37 - EXT LIGHTS panel
 - "STROBE" .. ON
 - "NAV" .. ON
 - "ICE LIGHT" ... ON

 From outside the airplane, check operation of all lights and the stall
 warning horn

38 - Reentering the airplane
 - EXT LIGHTS panel ALL SWITCHES OFF
 - DE ICE SYSTEM panel ALL SWITCHES OFF

39 - "SOURCE" selector .. OFF
AMPLIFIED PROCEDURES

PREFLIGHT INSPECTION (Cont’d)

Cabin

1 - Cabin fire extinguisher CHECK
 (Pressure / Attachment)
 The fire extinguisher is provided with a pressure gage.

2 - Seats / belts .. CHECK

3 - Windows .. CHECK
 (General condition / No cracks)

4 - Emergency exit ... CLOSED / LOCKED
 - Anti-theft safety REMOVE / STOW

5 - Baggage compartment STRAPS IN PLACE

6 - Partition net .. IN PLACE

7 - Doors operation ... CHECK

8 - Stairs condition .. CHECK
 (Condition / Play)
AMPLIFIED PROCEDURES

PREFLIGHT INSPECTION (Cont’d)

B - AIRPLANE OUTSIDE

The preflight inspection described in Figure 4.3.1 is recommended before each flight.

NOTE:
If a preflight inspection is performed, just after the engine shut-off, be careful because the leading edge of engine air inlet, as well as exhaust stubs may be very hot.

If the airplane was in long term storage or if it has undergone major maintenance or if it has been used from emergency airfields, a thorough outside inspection is recommended.

When the airplane is stored outside, the use of the flight control lock and blanking covers is recommended. Propeller should be tied down to prevent rotation without oil pressure.

When the airplane is stored for extended periods of time, a thorough preflight inspection is recommended. Particular attention should be paid to possible blockages in airspeed sensing lines, foreign objects in engine intake and exhaust stubs and water contamination of the fuel system.

L.H. wing III

1 - Flap .. CHECK
 (Condition / Play)
 Also inspect the lower surface, as well as flap fairing, where pebbles (and even ice in case of slush on the runway) may have accumulated.

2 - Aileron and trim / Spoiler CHECK
 (Condition / Free movement / Deflection)
 Ensure there are no foreign objects in the spoiler recess. When ailerons are in the neutral position, it is normal that spoilers are lightly extended at upper surface.
AMPLIFIED PROCEDURES

PREFLIGHT INSPECTION (Cont'd)

3 - Trailing edge static discharger CHECK
 (Condition / Attachment)

4 - Wing tip / nav. lights /
 Strobe / landing light Condition - CHECK

5 - OAT probe .. Condition - CHECK

6 - Fuel tank ... CAP CLOSED / LOCKED
 Fuel tank caps must be tight (which is characterized by a
 consequent exertion to lock and unlock them) to avoid water
 infiltration in case of rain on ground, and to avoid fuel loss in flight.

7 - Fuel tank air vent UNOBSSTRUCTED - CHECK
 Air vent is not likely to be obstructed by ice or water, as it is located in
 a wing lower surface recess.

8 - External pitot (IAS) Condition - CHECK

9 - Internal pitot (V_{MO}) Condition - CHECK

10 - Wing lower surface CHECK
 - Check fuel tank access doors for leaks
 - Check for surface damage.

11 - Wing deicer boots CHECK
 (Condition / Attachment)
 Care must be taken when refuelling the airplane to avoid damaging
 the wing deicer boots. A protective apron should be used if possible.
AMPLIFIED PROCEDURES

PREFLIGHT INSPECTION (Cont’d)

12 - Fuel tank drain (two on each wing) DRAIN
 (Fuel free of water and contamination)
In case of water in fuel system, drain it carefully using the four drain
valves of tank sumps, and the fuel filter drain valve, till every trace of
water or deposit has disappeared.
A long term storage of the airplane causes water accumulation in
fuel, which absorbs additive. This phenomenon occurs when an
excessive quantity of water accumulates in fuel tank sumps. Refer
to Section 8 for servicing operations relative to fuel additives.

13 - L.H. main landing gear
 - Shock absorber / doors /
 tire / wheel well CHECK
If airplane has been used from muddy airfields or in snow, check
wheel wells to make sure they are clean and not obstructed.
Check frequently all landing gear retraction mechanism
components, shock-absorbers, tires and brakes. This is
particularly important for airplanes used from hilly fields.
Improperly serviced or worn shock-absorbers may result in
excessive loads being transmitted to the airplane structure during
ground operations. Without passengers and baggages on board,
the unpainted surface of the main gear shock absorber tube must
be visible about:
 - 55 mm (2.17 in.) of minimum height with half tank,
 - 40 mm (1.57 in.) of minimum height with full tanks.
AMPLIFIED PROCEDURES

PREFLIGHT INSPECTION (Cont'd)

Fuselage forward section

1 - Forward compartment
 - Inside ... CONTROLLED
 - Door ... CLOSED / LOCKED

2 - GPU door CLOSED
 (If not used)

3 - Fuel circuit drain DRAIN
 (Fuel free of water and contamination)
 - Filter contamination indicator CHECK
 Open the inspection door located on
 L.H. side under front baggage compartment

4 - L.H. exhaust stub CHECK
 (Condition / No crack)
 Inspect if possible pressure port located inside exhaust stub. A
 missing port or a cracked port may hinder correct operation of
 continuous heating of air inlet lip.

5 - Upper engine cowls OPEN

 For the first flight of the day :
 - Engine oil level CHECK
 - Fuel pipes ... CHECK
 (No leak, deterioration, wear)

6 - Engine cowls Condition - CHECK
 CLOSED / LOCKED
AMPLIFIED PROCEDURES

PREFLIGHT INSPECTION (Cont’d)

7 - Air inlets
 - Main No crack – UNOBRUCTED
 Check for no cracks, which are sometimes put in evidence by
 traces of soot resulting from exhaust gases.
 - Lateral / upper UNOBRUCTED
 Lateral air inlets, which supply air conditioning system and oil
 cooler, are provided with blanking covers. It is not the case for
 upper air inlets of RAM AIR system (circular grille located in front
 of R.H. windshield) and of vapor cycle cooling system (two
 rectangular grilles located forward of the circular grille).

8 - Propeller and spinner CHECK
 (No nicks, cracks or oil leaks / Attachment)
 In case of operation from contaminated runways, it is necessary to
 carefully examine propeller blades, where traces of abrasion may
 be found. Propeller damage may reduce blade life time and
 degrade performance. Any propeller damage should be referred to
 maintenance personnel.

9 - Nose gear
 - Landing light / shock absorber / doors /
 tire / wheel well CHECK
 Without passengers and baggages on board, the unpainted
 surface of the nose gear shock absorber tube must be visible
 about:
 - 57 mm (2.22 in) of minimum height with full tanks,
 - 63 mm (2.46 in) of minimum height with half tank.

NOTE :
Crush or relieve the shock absorber one time or twice before the
inspection to remove possible sticking.

In case of doubt, request a check of the shock absorber pressure.

10 - R.H. exhaust stub CHECK
 (Condition / No cracks)
AMPLIFIED PROCEDURES

PREFLIGHT INSPECTION (Cont’d)

R.H. wing

Additional remarks are identical to those of L.H. wing.

1 - Fuel tank drain (two on each wing) DRAIN
 (Fuel free of water and contamination)

2 - Main landing gear
 - Shock absorber / doors /
 tire / wheel well CHECK

3 - Wing deicer boots CHECK
 (Condition / Attachment)

4 - Stall warning CHECK
 (Condition / Deflection)

5 - Wing lower surface CHECK
 (No leaks)

6 - Fuel tank CAP CLOSED / LOCKED

7 - Fuel tank air vent Unobstructed - CHECK

8 - Wing tip / nav. light /
 strobe / landing light Condition - CHECK

9 - Trailing edge static discharger CHECK
 (Condition / Number / Attachment)

10 - Aileron / spoiler CHECK
 (Condition / Free movement / Deflection)

11 - Flap CHECK
 (Condition / Play)

12 - Rear R.H. karman Oxygen cylinder open

13 - Oxygen pressure CHECK
AMPLIFIED PROCEDURES

PREFLIGHT INSPECTION (Cont’d)

Fuselage rear section / Empennages VI

Check that outside handle of emergency exit is flush with door skin.

1 - ELT ... OFF
Access to ELT is possible through an inspection door located on R.H. side of fuselage rear section.

2 - Static pressure ports Clean - CHECK

3 - Ventral fins ... CHECK
(Attachment condition)
Ventral fins are made of two parts (one fixed part and one removable part with rear lower inspection door). Check that these two parts are connected by the locking roller.

4 - Inspection door under fuselage CLOSED - CHECK
(Attachments)

5 - Horizontal stabilizer
deicer boots (R.H. side) CHECK
(Condition / Attachments)

6 - Elevator and trim CHECK
(Condition / Deflection free movement / Trim position)
To check the deflection, hold the two half-elevators near fuselage, inside both elevator trims to avoid stresses.

7 - Static dischargers CHECK
(Condition)

8 - Vertical stabilizer deicer boots CHECK
(Condition / Attachments)

9 - Rudder and trim .. CHECK
(Condition / Trim position)
PREFLIGHT INSPECTION (Cont'd)

<table>
<thead>
<tr>
<th>10</th>
<th>Static dischargers</th>
<th>CHECK (Condition)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Tail cone</td>
<td>Condition - CHECK</td>
</tr>
<tr>
<td>12</td>
<td>Static pressure ports</td>
<td>Clean - CHECK</td>
</tr>
<tr>
<td>13</td>
<td>Rear baggage compartment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inside</td>
<td>CONTROLLED</td>
</tr>
<tr>
<td></td>
<td>Door</td>
<td>CLOSED / LOCKED</td>
</tr>
</tbody>
</table>
AMPLIFIED PROCEDURES

BEFORE STARTING ENGINE

Check that the weight and balance are within the correct limits. Brief passengers about use of seat belts and the emergency oxygen system, as well as opening the access door and the emergency exit.

CAUTION

"BLEED" SWITCH "AUTO" MAY CAUSE OVERTEMPERATURE OR ABNORMAL ACCELERATION AT START

CAUTION

MAKE SURE THAT "MAN OVRD" CONTROL IS "OFF" TO AVOID OVERTEMPERATURE RISKS AT START

1 - Preflight inspection COMPLETED
2 - Cabin access door CLOSED / LOCKED
3 - "Pilot" door (if installed) CLOSED / LOCKED
4 - Baggage .. STOWED
5 - Parking brake SET
 "PARK BRAKE" warning light located on advisory panel does not indicate that parking brake is set. For that, press on brake pedals before turning parking brake selector to the right.
6 - Weight and balance COMPUTED / CHECKED
AMPLIFIED PROCEDURES

BEFORE STARTING ENGINE (Cont’d)

7 - Pilot seat and R.H. front seat (if occupied)
 - Height adjustment Maximum UP
 - Fore and aft adjustment ADJUST and CHECK LOCKING
 - Height adjustment ADJUST

CAUTION

IT IS MANDATORY TO ADJUST SEAT IN FORE-AFT
MOVEMENT WHEN SEAT IS IN MAXIMUM HIGH
PERMISSIBLE POSITION, TO AVOID INTERFERENCE
BETWEEN SIDE UPHOLSTERY PANEL AND SEAT
HOUSING IN LOW AND INTERMEDIATE POSITIONS

Adjust pilot’s and R.H. front station seats and harnesses, so as to
permit access to all flight controls. The pilot at L.H. station must be
able to easily reach ECS panel.

8 - R.H and L.H. pedals ADJUSTED

9 - Belts and harnesses (Pilot and passengers) FASTENED
 Check belt buckles for correct locking, as well as automatic locking
 of shoulder harness by exerting a rapid pull on the latter.

10 - Oxygen supply Available for the planned flight
 (see tables of paragraph “IN-FLIGHT AVAILABLE
 OXYGEN QUANTITY” and Chapter 7.10
 for a FAR 135 type operation)

11 - ”OXYGEN” switch ON

12 - ”PASSENGERS OXYGEN” switch OFF

13 - Copilot and pilot masks Press push-button
 ”PRESS TO TEST” : the blinker shall turn red
 momentarily, then turns transparent

14 - ”NORMAL/MASK” micro inverter NORMAL
AMPLIFIED PROCEDURES

BEFORE STARTING ENGINE (Cont’d)

15 - “STARTER” switch .. OFF
If not, starter is going to operate as soon as “SOURCE” selector is positioned on BAT or GPU in case of supplying by GPU.

16 - “IGNITION” switch AUTO or OFF
The “IGNITION” switch is normally selected to AUTO. This ensures ignition, whenever the starter is activated.

17 - Landing gear control DN

18 - “RADIO MASTER” switch ON

19 - RADIO VHF1 .. ON / ADJUSTED
An electric relay automatically cuts off radio equipment during starter operation.
The function "GND CLR" (ground clearance) enables, when "RADIO MASTER" switch is ON, to obtain VHF1 supply without having selected battery contact.

20 - Authorization for engine starting ASKED

21 - Fuel flow totalizer/computer CHECKED - ADJUSTED

22 - “SOURCE” selector BAT (or GPU)

23 - Passengers briefing AS REQUIRED

24 - Access door and (if installed) ”pilot” door WARNING LIGHT OFF
If “DOOR” warning light is not OFF, open the access door and (if installed) the "pilot" door and reclose it (them). Check locking pins are in place (green band is visible). Do not take off with "DOOR" warning light ON on the advisory panel.
AMPLIFIED PROCEDURES

BEFORE STARTING ENGINE (Cont'd)

25 - Fuel
- Gages ... CHECKED
- Tank selector L or R - CHECKED
- "FUEL SEL" switch AUTO

WARNING LIGHT AUTO SEL OFF
- "SHIFT" push-button PRESS
 The selector changes tank
 On ground, observe a tank change
 every minute and 15 seconds

26 - Fuel flowmeter totalizer CHECKED - ADJUSTED
Total fuel quantity on board may be set on flowmeter totalizer – see
Section 7 or refer to manufacturer technical data.

27 - Engine instruments CHECK

28 - ITT TEST CARRY OUT
Check 1888 number appearance in digital readout window, as well
as ITT red warning light illumination on advisory panel.

29 - EXT LIGHTS panel
- "STROBE" AS REQUIRED
 The use of strobe lights may generate discomfort to personnel on
 ground, particularly by night.

30 - In case of night flight
- INT LIGHTS panel : "INSTR" + "PANEL" ADJUSTED
- Navigation lights ON
- Flashlight (if necessary) IN PLACE
AMPLIFIED PROCEDURES

BEFORE STARTING ENGINE (Cont’d)

To maintain battery power for starting, and only when "GND CLR" (ground clearance) is available on airplane, VHF1 can be operated by setting "SOURCE" selector to OFF and "RADIO MASTER" switch to ON. A correct operation is provided by the "GND CLR" green light illuminating above the "RADIO MASTER" switch. If battery voltage is low (near 25 volts), turn off all unessential electrical equipment before selecting the starter ON. By night, emergency lighting, provided by two luminous spot lights located above front seats, is sufficient to illuminate crew documents and instrument panel.
STARTING ENGINE USING AIRPLANE POWER

CAUTION
BEFORE SELECTING SOURCE, CHECK:
1 - "IGNITION" switch AUTO or OFF
2 - "STARTER" switch OFF
3 - Landing gear control DN

4 - ELECTRIC POWER panel
 - "SOURCE" selector BAT
 - Mains voltage CHECKED
 > 25 Volts

5 - Engine controls
 - "MAN OVRD" control OFF (Notched)

CAUTION
WHEN THE ENGINE IS SHUTDOWN, THE POWER LEVER MUST NOT BE MOVED BEHIND THE FLIGHT IDLE POSITION

- Power lever IDLE
 (Flight idle stop)
- Propeller governor lever MAX. RPM
- Condition lever CUT OFF

6 - FUEL panel
 - "AUX BP" switch ON

WARNING LIGHT \[AUX BP ON \] ON
WARNING LIGHT \[FUEL PRESS \] OFF
- Fuel pressure indicator Green sector
AMPLIFIED PROCEDURES

STARTING ENGINE USING AIRPLANE POWER (Cont’d)

7 - Propeller AREA CLEAR

8 - ENGINE START panel
 - "IGNITION" switch AUTO
 - "STARTER" switch ON

 WARNING LIGHTS
 STARTER FLAShING
 IGNITION ON

NOTE:
The utilization of the starter is bound by limitations mentioned in Chapter 2.4 "STARTER OPERATION LIMITS".

Ng ≈ 13 %
 - Condition lever LO / IDLE
 When condition lever is positioned on LO / IDLE before having obtained 13 % of Ng, there is a risk of overtemperature further to an excessive accumulation of fuel inside the combustion chamber before ignition.

Monitor increase of:
 - ITT (max. ITT : 870°C for 20 seconds max.
 1000°C for 5 seconds max.)
 The absolute limit read on the indicator is 1090°C during the starting sequence (red triangle). However, the ITT limits during the starting sequence are:
 . 870°C for 20 seconds max.
 . 1000°C for 5 seconds max.

In case of starting with hot engine, an ITT decrease comprised between 150°C and 170°C (within starter operation limits), before opening of the condition lever, may allow to stay within above mentioned ITT limits.
AMPLIFIED PROCEDURES

STARTING ENGINE USING AIRPLANE POWER (Cont'd)

In case of higher temperature and longer time, stop immediately the starting procedure as indicated in the following caution and inform the maintenance department.

If starting engine procedure is aborted further to overtemperature indications (max. ITT : 870°C for more than 20 seconds - 1000°C for more than 5 seconds), maintaining during few seconds "STARTER" switch ON (within starter operating limits) may reduce max. ITT obtained by ventilating combustion chamber.

NOTE:
No action is required for the following conditions:

ITT: from 850 °C to 870 °C limited to 20 seconds,
from 870 °C to 1000 °C limited to 5 seconds.

CAUTION

IF 10 SECONDS AFTER HAVING POSITIONED CONDITION LEVER TO "LO / IDLE" THERE IS NO IGNITION OR IF DURING IGNITION SEQUENCE, OVERTEMPERATURE INDICATION APPEARS (MAX. ITT : 870°C FOR MORE THAN 20 SECONDS - 1000°C FOR MORE THAN 5 SECONDS),

INTERRUPT STARTING PROCEDURE:

Condition lever CUT OFF
"IGNITION" switch OFF (or AUTO)
AMPLIFIED PROCEDURES

STARTING ENGINE USING AIRPLANE POWER (Cont'd)

Wait ITT < 850°C, then:

"STARTER" switch OFF

BEFORE ANY RESTARTING ATTEMPT, CARRY OUT A MOToring
(Refer to paragraph "MOToring")

CONTINUE WITH NORMAL PROCEDURE HEREAFTER

- Ng
 The start sequence must be timed to ensure starter limits are not exceeded. Lengthy operation of the starter results in excessive temperature of the engine:
 - If Ng does not reach 30% within 30 seconds, after the starter is selected ON, abort the start.
 - If Ng does not reach 50% within 1 minute, abort the start.
 - Before starting a new test, respect delays indicated in Chapter 2.4 "STARTER OPERATION LIMITS".

- Oil pressure WARNING LIGHT OIL PRESS OFF

CAUTION

IF ENGINE IS SLOW TO START OR STAGNATES.

INTERRUPT STARTING PROCEDURE:

Condition lever CUT OFF
"IGNITION" switch OFF (or AUTO)
"STARTER" switch OFF

WAIT FOR 1 MINUTE (Refer to Chapter 2.4 "STARTER OPERATION LIMITS"), THEN TRY TO RESTART
AMPLIFIED PROCEDURES

STARTING ENGINE USING AIRPLANE POWER (Cont’d)

ENGINE START panel
- "IGNITION" switch AUTO
- "STARTER" switch ON

WARNING LIGHTS

STARTER FLASHERING
IGNITION ON

Ng ~ 13 %

- Condition lever HI / IDLE

Monitor increase of :
- ITT (max. ITT : 870°C for 20 seconds max. 1000°C for 5 seconds max.)
- Ng
- Oil pressure WARNING LIGHT

OIL PRESS OFF

Ng ~ 50 %
- "STARTER" switch OFF

WARNING LIGHTS

STARTER OFF
IGNITION OFF
AMPLIFIED PROCEDURES

STARTING ENGINE USING AIRPLANE POWER (Cont’d)

Engine instruments CHECK Ng increasing to 69 %
(Oil pressure / ITT = green sector)

NOTE:
This behaviour should only be observed with outside low temperature
(IOAT < 0 °C), cold engine.
This procedure may be used for the first starting of the day.

CONTINUE WITH NORMAL PROCEDURE HEREAFTER

9 - Condition lever HI / IDLE

10 - Engine instruments CHECK : Ng ∼ 69 % (± 2 %)
(Oil pressure / Oil temperature / ITT = green sector)

11 - FUEL panel
 - "AUX BP" switch AUTO
 At this time, observing a drop in the fuel pressure is normal.

 WARNING LIGHT
 AUX BP ON
 OFF

12 - Generator WARNING LIGHT
 MAIN GEN
 OFF
 RESET if necessary

"MAIN GEN" warning light normally goes out, as soon as
"STARTER" warning light goes out.
If not, increase Ng over 70 % to start main generator.
- Ammeter CHARGE CHECKED
- Voltmeter VOLTAGE CHECKED
 (V ∼ 28 Volts)
STARTING ENGINE USING EXTERNAL POWER (GPU)

Before connecting GPU, check that its indicated voltage is correct.

1 - GPU ... CONNECTED

2 - "SOURCE" selector GPU

<table>
<thead>
<tr>
<th>WARNING LIGHT</th>
<th>GPU ON</th>
</tr>
</thead>
<tbody>
<tr>
<td>WARNING LIGHT</td>
<td>BAT OFF ON</td>
</tr>
</tbody>
</table>

- Voltmeter .. VOLTAGE CHECKED
 (V \approx 28 \text{ Volts})

If voltage is \geq 30 \text{ volts}, immediately turn "SOURCE" selector to OFF. Radio navigation equipment may be damaged before main fuse failure.

3 - Engine controls
 - "MAN OVRD" control OFF (Notched)

CAUTION

WHEN THE ENGINE IS SHUTDOWN, THE POWER LEVER MUST NOT BE MOVED BEHIND THE FLIGHT IDLE POSITION

- Power lever .. IDLE
 (Flight idle stop)
- Propeller governor lever MAX RPM
- Condition lever CUT OFF
AMPLIFIED PROCEDURES

STARTING ENGINE USING EXTERNAL POWER (GPU) (Cont’d)

4 – FUEL panel
 - "AUX BP" switch ... ON

 WARNING LIGHTS
 AUX BP ON ON
 FUEL PRESS OFF

 - Fuel pressure indicator CHECK

5 – Propeller .. AREA CLEAR

6 – ENGINE START panel
 - "IGNITION" switch .. AUTO
 - "STARTER" switch .. ON

 WARNING LIGHTS
 STARTER FLASHING
 IGNITION ON

NOTE:
The use of the starter is limited. Refer to Chapter 2.4 "STARTER OPERATION LIMITS".

Ng ≈ 13 %
 - Condition lever ... LO / IDLE

When condition lever is positioned on LO / IDLE before having obtained 13 % of Ng, there is a risk of overtemperature further to an excessive accumulation of fuel inside the combustion chamber before ignition.

Avoid staying at or above 13 %, Ng is usually stabilized after leaving starter ON during 10 seconds.
AMPLIFIED PROCEDURES

STARTING ENGINE USING EXTERNAL POWER (GPU) (Cont’d)

Monitor increase of:
- ITT (max. ITT : 870°C for 20 seconds max.
 1000°C for 5 seconds max.)

The absolute limit read on the indicator is 1090°C during the
starting sequence (red triangle). However, the ITT limits during
the starting sequence are:
 . 870°C for 20 seconds max.
 . 1000°C for 5 seconds max.

In case of starting with hot engine, an ITT decrease comprised
between 150°C and 170°C (within starter operation limits), before
opening of the condition lever, may allow to stay within above
mentioned ITT limits.

In case of higher temperature and longer time, stop immediately the
starting procedure as indicated in the following caution and inform
the maintenance department.

This starting engine procedure must be also applied in case of drop
in voltage supplied by GPU. This drop will be shown by a low or zero
Ng acceleration.

If starting engine procedure is aborted further to overtemperature
indications (max. ITT : 870°C for more than 20 seconds – 1000°C
for more than 5 seconds), maintaining during few seconds
"STARTER" switch ON (within starter operating limits) may reduce
max. ITT obtained by ventilating combustion chamber.

NOTE:
No action is required for the following conditions:
- ITT from 850°C to 870°C limited to 20 seconds,
- ITT from 870°C to 1000°C limited to 5 seconds.
AMPLIFIED PROCEDURES

STARTING ENGINE USING EXTERNAL POWER (GPU) (Cont'd)

CAUTION
IF 10 SECONDS AFTER HAVING POSITIONED CONDITION LEVER TO "LO / IDLE" THERE IS NO IGNITION OR IF DURING IGNITION SEQUENCE, OVERTEMPERATURE INDICATION APPEARS (MAX. ITT : 870°C FOR MORE THAN 20 SECONDS - 1000°C FOR MORE THAN 5 SECONDS),

INTERRUPT STARTING PROCEDURE :
Condition lever CUT OFF
"IGNITION" switch OFF (or AUTO)
Wait ITT < 850°C, then :
"STARTER" switch OFF
BEFORE ANY RESTARTING ATTEMPT, CARRY OUT A MOTORING
(Refer to paragraph "MOTORING")
CONTINUE WITH NORMAL PROCEDURE HEREAFTER

- Ng
The start sequence must be timed to ensure starter limits are not exceeded. Lengthy operation of the starter results in excessive temperature of the engine :
- If Ng does not reach 30 % within 30 seconds, after the starter is selected ON, abort the start.
- If Ng does not reach 50 % within 1 minute, abort the start.
- Before starting a new test, respect delays indicated in Chapter 2.4 "STARTER OPERATION LIMITS".

- Oil pressure WARNING LIGHT

Page 4.4.30

Rev. 0
AMPLIFIED PROCEDURES

STARTING ENGINE USING EXTERNAL POWER (GPU) (Cont’d)

CAUTION
IF ENGINE IS SLOW TO START OR STAGNATES.
INTERRUPT STARTING PROCEDURE:
Condition lever ... CUT OFF
"IGNITION" switch ... OFF (or AUTO)
"STARTER" switch ... OFF
WAIT FOR 1 MINUTE (Refer to Chapter 2.4 "STARTER OPERATION LIMITS"), THEN TRY TO RESTART

ENGINE START panel
- "IGNITION" switch .. AUTO
- "STARTER" switch ... ON

WARNING LIGHTS

STARTER [FLASHING]
IGNITION [ON]

Ng ≈ 13 %

- Condition lever .. HI / IDLE

Monitor increase of:
- ITT (max. ITT : 870°C for 20 seconds max. 1000°C for 5 seconds max.)
- Ng
- Oil pressure WARNING LIGHT [OFF]

OIL PRESS
AMPLIFIED PROCEDURES

STARTING ENGINE USING EXTERNAL POWER (GPU) (Cont’d)

<table>
<thead>
<tr>
<th>Ng ~ 50%</th>
<th>STARTER switch</th>
<th>OFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>WARNING LIGHTS</td>
<td>STARTER</td>
<td>OFF</td>
</tr>
<tr>
<td>WARNING LIGHTS</td>
<td>IGNITION</td>
<td>OFF</td>
</tr>
</tbody>
</table>

Engine instruments CHECK Ng increasing to 69 %
(Oil pressure / ITT = green sector)

NOTE:
This behaviour should only be observed with outside low temperature (IOAT < 0 °C), cold engine.
This procedure may be used for the first starting of the day.

CONTINUE WITH NORMAL PROCEDURE HEREAFTER

7 - "SOURCE" selector .. BAT

| WARNING LIGHT | BAT OFF | OFF |

8 - Propeller governor lever FEATHER
This reduces propeller blast on the person disconnecting the GPU.

9 - GPU ... HAVE IT DISCONNECTED

| WARNING LIGHT | GPU | OFF |

This means that ground power receptacle door has been correctly locked.

10 - Condition lever ... HI / IDLE

11 - Propeller governor lever MAX. RPM
AMPLIFIED PROCEDURES

STARTING ENGINE USING EXTERNAL POWER (GPU) (Cont’d)

12 - Engine instruments CHECK : \(\text{Ng} \approx 69\% (\pm 2\%) \)
 (Oil pressure / Oil temperature / ITT = green sector)

13 - FUEL panel
 - "AUX BP" switch AUTO
 At this time, observing a drop in the fuel pressure is normal.

 \begin{center}
 \begin{tabular}{c|c|c}
 WARNING LIGHT & AUX BP ON & OFF \\
 \hline
 \end{tabular}
 \end{center}

14 - Generator WARNING LIGHT
 MAIN GEN
 \begin{center}
 \begin{tabular}{c|c|c}
 WARNING LIGHT & MAIN GEN & OFF \\
 \hline
 \end{tabular}
 \end{center}

 RESET if necessary

 "MAIN GEN" warning light normally goes out, as soon as
 "STARTER" warning light goes out.

 If not, increase Ng over 70% to start main generator.
 - Ammeter CHARGE CHECKED
 - Voltmeter VOLTAGE CHECKED
 (\(V \approx 28 \text{ Volts} \))
AMPLIFIED PROCEDURES

MOTORING

To drain fuel accumulated inside the combustion chamber, a motoring procedure is required following an aborted start. A 15-second dry motoring run is sufficient to clear any fuel pooled in the engine.

CAUTION

AFTER ANY STARTING INTERRUPT PROCEDURE:
- WAIT FOR ENGINE TOTAL SHUT-DOWN
- WAIT AT LEAST 30 SECONDS BEFORE INITIATING A MOTORING

1. Engine controls
 - "MAN OVRD" control OFF (Notched)

CAUTION

WHEN THE ENGINE IS SHUTDOWN, THE POWER LEVER MUST NOT BE MOVED BEHIND THE FLIGHT IDLE POSITION

- Power lever IDLE
 (Flight idle stop)
- Propeller governor lever MAX RPM
- Condition lever CUT OFF
AMPLIFIED PROCEDURES

MOTORING (Cont’d)

2 - FUEL panel
 - Tank selector L or R
 - "AUX BP" switch ON

 WARNING LIGHTS
 AUX BP ON ON
 FUEL PRESS OFF

Fuel pressure is necessary for lubrication of HP pump.

3 - "IGNITION" switch OFF

 WARNING LIGHT
 IGNITION OFF

4 - "STARTER" switch ON for 15 sec maxi

 WARNING LIGHT
 STARTER FLASHING

If ignition symptoms occur (ITT increasing), check that "IGNITION" switch is OFF, that condition lever is on CUT OFF and continue motoring.

5 - "STARTER" switch OFF

 WARNING LIGHT
 STARTER OFF

6 - FUEL panel
 - "AUX BP" switch OFF

 WARNING LIGHTS
 AUX BP ON OFF
 FUEL PRESS ON
AMPLIFIED PROCEDURES

MOTORING FOLLOWED BY AN ENGINE START

Amplified procedures stated in starting engine sequences using airplane power or with GPU are also to be applied to hereunder procedure.

Within starter operating limits (continuous max. 1 minute), it is possible to initiate a starting procedure from a motoring procedure.

This procedure will conserve the battery by taking advantage of first Ng acceleration.

1 - Engine controls
 - "MAN OVRD" control OFF (Notched)

 CAUTION
 WHEN THE ENGINE IS SHUTDOWN, THE POWER LEVER MUST NOT BE MOVED BEHIND THE FLIGHT IDLE POSITION
 - Power lever IDLE
 (Flight idle stop)
 - Propeller governor lever MAX. RPM
 - Condition lever CUT OFF

2 - Fuel
 - Tank selector L or R
 - "AUX BP" switch ON

 WARNING LIGHTS
 - AUX BP ON ON
 - FUEL PRESS OFF

3 - "IGNITION" switch OFF

4 - "STARTER" switch ON during 15 sec
AMPLIFIED PROCEDURES

MOTORING FOLLOWED BY AN ENGINE START (Cont'd)

5 - After 15 seconds:
 - "IGNITION" switch AUTO
 - Ng .. Check at 13 % minimum
 - Condition lever LO / IDLE

6 - Monitor increase of:
 - ITT (max. ITT : 870°C for 20 seconds max.
 1000°C for 5 seconds max.)
 - Ng
 - oil pressure WARNING LIGHT OIL PRESS OFF

NOTE:
No action is required for the following conditions:

- ITT from 850°C to 870°C limited to 20 seconds,
- ITT from 870°C to 1000°C limited to 5 seconds.

Ng ≈ 50 % stable
- "STARTER" switch OFF

7 - Engine instruments CHECK : Ng > 52 %
 (Oil pressure / ITT = green sector)

8 - Condition lever HI / IDLE

9 - Engine instruments CHECK : Ng ≈ 69 % (± 2 %)
 (Oil pressure / Oil temperature / ITT = green sector)

Rev. 0
AMPLIFIED PROCEDURES

MOTORING FOLLOWED BY AN ENGINE START (Cont'd)

10 - FUEL panel
 - "AUX BP" switch .. AUTO
 WARNING LIGHT AUX BP ON OFF

11 - Generator WARNING LIGHT MAIN GEN OFF
 RESET if necessary
 - Ammeter ... CHARGE CHECKED
 - Voltmeter .. VOLTAGE CHECKED
 \(V \approx 28 \text{ Volts} \)
AMPLIFIED PROCEDURES

AFTER STARTING ENGINE

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GYRO INST panel</td>
</tr>
<tr>
<td></td>
<td>- All switches ... ON</td>
</tr>
<tr>
<td></td>
<td>Pull on the caging knobs when starting the ADI(s).</td>
</tr>
<tr>
<td>2</td>
<td>Gyroscopic suction gage indicator GREEN SECTOR</td>
</tr>
<tr>
<td></td>
<td>WARNING LIGHT</td>
</tr>
<tr>
<td></td>
<td>VACUUM LO</td>
</tr>
<tr>
<td></td>
<td>OFF</td>
</tr>
<tr>
<td>3</td>
<td>GYRO SLAVING selector SLAVE</td>
</tr>
<tr>
<td>4</td>
<td>DE ICE SYSTEM panel</td>
</tr>
<tr>
<td></td>
<td>Flight into known icing conditions is authorized only when all ice protection equipment are operating correctly. This equipment may be activated before takeoff, even during taxiing, in case of icing conditions on ground. Refer to Chapter 4.5 "PARTICULAR PROCEDURES" of this Section.</td>
</tr>
<tr>
<td></td>
<td>- "PROP DE ICE" switch ... ON</td>
</tr>
<tr>
<td></td>
<td>Check illumination of the green light located above the switch</td>
</tr>
<tr>
<td></td>
<td>Illumination of the green light shows that power supplied to blade root electric resistors is between 8 and 10 amperes. It is advised to wait at least a whole half cycle (90 seconds) to check that both blade pairs are correctly deiced.</td>
</tr>
<tr>
<td></td>
<td>- "PROP DE ICE" switch ... OFF</td>
</tr>
<tr>
<td></td>
<td>- "L.WINDSHIELD" switch ... ON</td>
</tr>
</tbody>
</table>
AMPLIFIED PROCEDURES

AFTER STARTING ENGINE (Cont’d)

- "R.WINDSHIELD” switch .. ON
 Check illumination of the green
 light located above the switch
 (except if hot conditions)

 This light may remain OFF, if cabin temperature is very high, for
 example after a prolonged parking in hot conditions (see
 Chapter 7.13 for operational principle).

- "L.WINDSHIELD” switch OFF
- "R.WINDSHIELD” switch OFF

Increase power so as to get Ng ≥ 80% to check AIRFRAME DE ICE

Theoretically, necessary air bleed to inflate wing and empennage
leading edges, as well as depression necessary to their deflation
are sufficient when power lever is positioned on IDLE. However, it is
advised for check to choose a Ng power ≥ 80 % in order to obtain
operation design pressure, which enables illuminating surely the
two green lights and avoiding "VACUUM LO" untimely alarms.

- "AIRFRAME DE ICE” switch ON
 Visually check functioning of deicer boot
during 1 total cycle and illumination of the
 two green lights located above the switch

 The cycle lasts 67 seconds. Check both inflation impulses, and
 illumination of each corresponding green light:
 - the first impulse inflates the external and middle wing boots,
 - the second impulse inflates the leading edge boots of
 empennages and inner wing.

- "AIRFRAME DE ICE” switch OFF
- "INERT SEP” switch ON

 WARNING LIGHT INERT SEP ON

 full deflection takes about 30 seconds

"INERT SEP” switch is kept on while taxiing in order to avoid
ingestion of particles by the engine.
AMPLIFIED PROCEDURES

AFTER STARTING ENGINE (Cont’d)

5 - "GENERATOR" selector
 For these tests, "BLEED" switch must be left OFF, to unload the generator circuit.
 - On "MAIN" Voltage and current checked
 when current \(\leq 50 \text{ amps} \):
 - on "ST-BY" Voltage and current checked
 (reset if necessary)
 If the indicated voltage on the "ST BY" generator is low (close to 27 volts), reset the "ST BY" generator and recheck the voltage. The indicated voltage should be in the green range.
 - then again on "MAIN"

6 - Flaps ... UP

[WARNING]

IT IS PROHIBITED TO SET FLAPS CONTROL LEVER TO "850" POSITION ON GROUND AND FOR TAKEOFF

7 - ECS panel
 - "BLEED" switch AUTO
 - "FAN FLOW" switch As required
 - "AIR COND" switch ON
 A cabin temperature good regulation will only be obtained, if "AIR COND" switch is set to ON.
 There is no inconvenience to set "AIR COND" switch to FAN ONLY before starting engine for passenger and crew comfort, provided that voltage is \(> 25 \text{ volts} \).
 - "CABIN TEMP/°C" selector ADJUST
 - "AIR FLOW" distributor AS REQUIRED
 Usually selected to CABIN. However, if canopy misting is evident, select DEFOG or HOT to increase demisting efficiency.
 Cabin altitude selector Airfield altitude - 500 feet

Rev. 0 Page 4.4.41
AMPLIFIED PROCEDURES

AFTER STARTING ENGINE (Cont’d)

Cabin rate selector ARROW UPWARDS
(at the halfway post)
Such a selection will limit cabin rate selector at about ± 500 ft/min. If selector is turned to the right, limited values of cabin rate selector increase.

8 - “RADIO MASTER” switch ON
 - VHF/VOR/GPS/TAS/
 EGPWS/WX means (if installed) ADJUSTED - TESTED

9 - ”EFIS MASTER” switch ON
 - ”TEST / CMPST” button PRESS
 - ”TST / REF” button PRESS at least 3 seconds
Detailed control procedures of EFIS system are described in Section 9 ”Supplements”.

10 - ”AP / TRIMS MASTER” switch ON
 - Preflight test button PRESS
 - ”AP / TRIMS MASTER” operation CHECK
Detailed control procedures of autopilot and electrical pitch trim are described in Section 9 ”Supplements”.
 - Pitch trim UP / DN, then ADJUSTED
 Adjust the indicator in green range (graduated from 12 to 37 % of center of gravity) facing corresponding center of gravity.
 - Yaw trim L / R, then ADJUSTED
 Adjust the indicator in green range TO (TAKEOFF).
 - Roll trim L / R, then ADJUSTED
 Adjust the indicator first at neutral position (horizontal marker).
AMPLIFIED PROCEDURES

| TAXIING |
|-----------------|-----------------|
| 1 - "TAXI" light | ON |
| 2 - "INERT SEP" switch | CHECKED ON |
| **CHECK WARNING LIGHT** | **INERT SEP** ON |

It is recommended that the inertial separator be used during all ground operations.

3 - Passenger briefing | AS REQUIRED
4 - Parking brake | RELEASED
Make sure that chocks are removed (if used).

5 - L.H. and R.H. seat brakes | CHECKED
6 - Nose wheel steering | CHECKED
The control wheel will move (roll) in the same direction as the rudder pedals due to the rudder / aileron interconnect.

7 - Power lever | AS REQUIRED
After initial acceleration, power lever may be in the "TAXI RANGE" sector, avoiding excessive movements in order to keep a constant ground speed.
The condition lever must be in the HI / IDLE position to keep the propeller RPM (Np) out of the caution (yellow) range while taxiing.
AMPLIFIED PROCEDURES

TAXIING (Cont'd)

CAUTION
AVOID USING REVERSE DURING TAXIING

Operation in the Beta (β) range / reverse is not restricted during ground operations. However, foreign particles (dust, sand, grass, gravel, etc...) may be blown into the air, ingested by the engine (above all if "INERT SEP" switch is turned OFF) and cause damage to the propeller.

8 - Flight instruments .. CHECK
Check navigation and communication systems before or during taxiing, check gyroscopic instruments during ground turns.

9 - Advisory panel .. CHECK
BEFORE TAKEOFF

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Parking brake SET</td>
</tr>
<tr>
<td></td>
<td>WARNING LIGHT PARK BRAKE ON</td>
</tr>
<tr>
<td>2</td>
<td>Condition lever HI / IDLE [Ng: 68 % (± 2 %)]</td>
</tr>
<tr>
<td>3</td>
<td>Propeller governor lever FEATHER twice, then MAX. RPM</td>
</tr>
<tr>
<td></td>
<td>During this test, the power lever must be at flight idle. Keep the time spent with the propeller RPM in the caution (yellow) range at a minimum.</td>
</tr>
<tr>
<td>4</td>
<td>Fuel</td>
</tr>
<tr>
<td></td>
<td>Gages CHECK (Quantity / Symmetry)</td>
</tr>
<tr>
<td></td>
<td>Maximum dissymmetry is 15 us gal (57 litres). It is recommended to select the fullest tank (by pushing the "SHIFT" push-button) if the lift off is expected within 1 minute and 15 seconds</td>
</tr>
<tr>
<td></td>
<td>"FUEL SEL" switch CHECKED AUTO</td>
</tr>
<tr>
<td></td>
<td>"AUX BP" switch CHECKED AUTO</td>
</tr>
<tr>
<td>5</td>
<td>Flaps TO</td>
</tr>
<tr>
<td>6</td>
<td>DE ICE SYSTEM panel</td>
</tr>
<tr>
<td></td>
<td>"AIRFRAME DE ICE" switch As required</td>
</tr>
<tr>
<td></td>
<td>"PROP DE ICE" switch As required</td>
</tr>
</tbody>
</table>

If runway is in good condition, without icing conditions:

- "INERT SEP" switch OFF

Warning light goes out immediately, but it takes 30 seconds to retract the separator.

Rev. 0
AMPLIFIED PROCEDURES

BEFORE TAKEOFF (Cont'd)

If there is standing water or other contamination on the runway:

- "INERT SEP" switch Left ON

 WARNING LIGHT
 INERT SEP ON

- "L.WINDSHIELD" switch As required
- "R.WINDSHIELD" switch As required
- "PITOT 1 HTR" switch ON
- "PITOT 2 & STALL HTR" switch ON

7 - Advisory panel CHECK
All warning lights OFF,

 except PARK BRAKE ON

 and, if used INERT SEP ON

8 - Electronic equipment /
Flight instruments / radar (if installed) CHECK / ADJUST
On ground, maintain radar (if installed) on SBY in order not to generate radiations prejudicial to outside persons.

9 - Engine instruments CHECK
All engine parameters must be in green range, except propeller RPM, which will be about 1000 RPM or more with power lever at IDLE.

10 - Pilot's / Passengers' belts CHECK

11 - Flight controls DEFLECTIONS CHECKED
AMPLIFIED PROCEDURES

BEFORE TAKEOFF (Cont’d)

12 - Trims
- Pitch .. ADJUSTED
- Yaw .. ADJUSTED
- Roll ADJUSTED

13 - Parking brake RELEASED

WARNING LIGHT PARK BRAKE OFF

14 - "STROBE" switch ON

CAUTION

DO NOT TAKE OFF IF BATTERY CHARGE > 50 Amperes

After starting engine with airplane power, a battery charge above 50 amperes is normal. If this indication remains steady at a high value, it may be then a battery or generation system failure. Do not take off in these conditions.
AMPLIFIED PROCEDURES

TAKEOFF

WHEN LINED UP

CAUTION

- IF HEAVY PRECIPITATION, TURN IGNITION AND INERT SEP ON.
- IF ICING CONDITIONS ARE FORESEEN, REFER TO CHAPTER 4.5, PARAGRAPH "FLIGHT INTO KNOWN ICING CONDITIONS"

1 - Heading - HSI - Stand-by compass CHECK
 The indication of the stand-by compass is disturbed when windshield(s) deice system(s) is (are) activated.
 - Altimeter setting CHECK

2 - Horizon .. Attitude + 2° - CHECK
 Horizon has been set so as to indicate a 2° nose up attitude, when airplane center of gravity is at a middle average.

3 - Lights
 - "L.LDG / TAXI / R.LDG" ON

4 - Engine instruments CHECK
 (ITT = green sector)

5 - Advisory panel CHECK
 All warning lights OFF,
 except INERT SEP if used
 except IGNITION if used

Page 4.4.48
AMPLIFIED PROCEDURES

TAKEOFF (Cont’d)

6 - Radar switch (if installed) As required

7 - PROP O’ SPEED GOVERNOR TEST
 - Increase power until propeller RPM reaches 1900 RPM
 - PROP O’ SPEED TEST : Maintain engaged
 - Observe that propeller RPM decreases of 50 to 150 RPM
 - PROP O’ SPEED TEST : Release
 - Check that propeller RPM increases again up to 1900 RPM

8 - Brakes ... RELEASED
 It is not necessary to reduce power at the end of "OVERSPEED" test; torque will be about 40% before brake release. For a normal takeoff, maximum torque (100%) will be applied after brake release. On short runway, maximum torque will be applied before brake release.

9 - Power lever ... TRQ = 100 %

10 - Takeoff ... ROTATION : See "Takeoff distances” Chapter 5.9
 - Normal takeoff ATTITUDE : 7°5
 - Short takeoff
 - Weight < 6579 lbs (2984 kg) ATTITUDE : 15°
 - Weight > 6579 lbs (2984 kg) ATTITUDE : 12°5
 Rotation speed at takeoff, according to airplane weight, is also given in Chapter 5.9.

11 - Vertical speed indicator POSITIVE

12 - Brakes ... APPLY
 (Briefly)

13 - Landing gear control (IAS < 128 KIAS) UP
AMPLIFIED PROCEDURES

TAKEOFF (Cont’d)

During the sequence:
- The red warning light flashes; it indicates that the landing gear engine is electrically supplied. It goes off when the 3 landing gears are locked. If the red warning light is fixed ON, there is a discrepancy (refer to EMERGENCY PROCEDURES).
- It is possible that the 3 landing gear position green indicator lights flash uncertainly then go off at the end of the sequence.

At sequence end, check: All warning lights OFF

In practice, if preconized attitude is kept, there is no difficulty to maintain a speed < 128 KIAS until landing gear retraction is completed.

14 - Initial climb speed Weight < 6579 lbs (2984 kg) : 110 KIAS
 Weight > 6579 lbs (2984 kg) : 115 KIAS

In case of initial climb at Vx, it is recommended not to retract flaps to UP before 500 ft AGL

 Weight < 6579 lbs (2984 kg) : 95 KIAS
 Weight > 6579 lbs (2984 kg) : 100 KIAS

15 - Flaps ... UP

16 - Flap control Only when flaps are confirmed UP by the flaps index : 850

In case of air leak between the solenoïd valve and the torque limiter, the available torque might be below 100 %. Consequently, it is strongly recommended not to select “850” position:
- for a new approach or visual circuit
- for staying below 1500 ft AGL

17 - Power lever TRQ = 121.4 %

18 - Climb speed (recommended) 130 KIAS
19	"YAW DAMPER" push-button	ON
20	Lights	
	"TAXI"	OFF
	"L.LDG / R.LDG"	AS REQUIRED
AMPLIFIED PROCEDURES

IN-FLIGHT AVAILABLE OXYGEN QUANTITY

Oxygen pressure ... Read
Outside air temperature (IOAT) ... Read

1 - Determine the usable oxygen percent using the chart Figure 4.4.1.

2 - Determine the oxygen duration in minutes by multiplying the values read on table Figure 4.4.2 by the percent obtained with the chart Figure 4.4.1.

<table>
<thead>
<tr>
<th>Number of passengers</th>
<th>Duration : Passengers, plus 1 pilot</th>
<th>Duration : Passengers, plus 2 pilots</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>226</td>
<td>113</td>
</tr>
<tr>
<td>1</td>
<td>162</td>
<td>94</td>
</tr>
<tr>
<td>2</td>
<td>127</td>
<td>81</td>
</tr>
<tr>
<td>3</td>
<td>104</td>
<td>71</td>
</tr>
<tr>
<td>4</td>
<td>88</td>
<td>65</td>
</tr>
</tbody>
</table>

Figure 4.4.1

Figure 4.4.2
CLIMB

1 - Power lever ADJUST according to engine operation tables - Chapter 5.8

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBSERVE TRQ / Ng / Np / ITT / T°</td>
</tr>
<tr>
<td>AND OIL PRESSURE LIMITATIONS</td>
</tr>
<tr>
<td>(Refer to tables in Chapter 5.8)</td>
</tr>
</tbody>
</table>

Torque setting during climb must be adjusted according to engine operation tables in Chapter 5.8. These tables give the max. climb power torque setting (MXCL). For each engine, when torque is reduced below 121.4 % at high altitude according to the tables, during the final climb, reaching the maximum permitted Ng (104 %) is possible and the ITT will be approximately constant, giving a particular value of ITT.

For a simplified engine operation during climb, power may be set first of all by torque, using 121.4 %, then, when the ITT typical value for climb is reached, by indicated ITT, using this particular value. The margin between this indicated ITT and 790°C (recommended ITT limit during continuous operation) will gradually reduce as flight time is performed.

2 - Climb speed AS REQUIRED
 - If weight is below 6579 lbs (2984 kg), best climb speed is 123 KIAS.
 - If weight is above 6579 lbs (2984 kg), best climb speed is 124 KIAS.

Performance tables concerning climb at 130 and 160 KIAS are given in Chapter 5.10.
AMPLIFIED PROCEDURES

CLIMB (Cont’d)

3 - ECS panel
 - Cabin altitude selector Cruise altitude + 1000 feet
 - Cabin rate selector ADJUST so as to obtain a cabin climb rate of about 500 ft/min

 It concerns the control on triple indicator of cabin rate, as well as increasing of differential pressure and cabin altitude.

 - Pressurization CHECK
 - “CABIN TEMP/°C” selector ADJUST

4 - Fuel tank gages CHECK / CORRECT (Quantity / Symmetry)

 In spite of fuel selector automatic operation, a non-negligible dissymmetry may be observed at the end of climb, for example when 10 minutes of climb have been performed on the same fuel tank. Consequently, it is recommended to select the fullest tank by pushing the “SHIFT” push-button, at the beginning of the climb. Tolerated maximum dissymmetry is 15 us gal (57 Litres).

5 - DE ICE SYSTEM As required
 Refer to Chapter 4.5
 ”PARTICULAR PROCEDURES”

CAUTION

IF HEAVY PRECIPITATION, TURN IGNITION AND INERT SEP ON
CRUISE

1. Power lever ADJUST according to engine operation tables - Chapter 5.8

 As indicated in lower part of these tables, reduce propeller RPM is possible (without touching power lever), in order to improve sound comfort without significant performance change (speed, consumption).

 FLAPS set to UP position (Active torque limiter)

 However, at the time of this setting, limit permitted by torque limiter may be reached. This limit is 110% at sea level and drops to about 100% at 31000 ft. Therefore, any propeller RPM reducing performed in altitude from a torque close to 100% (if ITT limit permits it) will be followed by a non-negligible power (and performance) decrease owing to torque limiter.

 FLAPS set to 850 position (Not active torque limiter)

 Propeller RPM reducing is possible, until 121.4% maximum torque is reached (red line on indicator).

CAUTION

OBSERVE TRQ / Ng / Np / ITT / T° AND OIL PRESSURE LIMITATIONS

(Refer to tables in Chapter 5.8)

Engine operation tables (Chapter 5.8) give torque to be applied according to IOAT, in order not to exceed authorized maximum power.

When "INERT SEP" switch is OFF, a more accurate setting of power must then be performed according to cruise performance tables presented in Chapter 5.11.
AMPLIFIED PROCEDURES

CRUISE (Cont’d)

2 - Pressurization ... CHECK

3 - Fuel
 - Gages ... CHECK

 REGULARLY CHECK:
 - consumption
 - tank automatic change (every 10 minutes)
 - symmetry [max. dissymmetry 15 us gal (57 Litres)]

When the cruise parameters are stabilized (after 4 min minimum)

4 - Cruise parameters / engine data CHECK/RECORD

5 - DE ICE SYSTEM .. As required

 Refer to Chapter 4.5
 ”PARTICULAR PROCEDURES”

CAUTION

IF HEAVY PRECIPITATION, TURN IGNITION
AND INERT SEP ON
FLAP CONTROL TRANSITION FROM “UP” TO “850”

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Flaps</td>
<td>Checked Up</td>
</tr>
<tr>
<td>2</td>
<td>Propeller RPM</td>
<td>2000</td>
</tr>
<tr>
<td>3</td>
<td>Power lever</td>
<td>TRQ less than 100 %</td>
</tr>
<tr>
<td>4</td>
<td>Flap control lever</td>
<td>From UP to 850</td>
</tr>
</tbody>
</table>

The torque limiter is deactivated.

CAUTION

OBSERVE TRQ / Ng / Np / ITT / T°

AND OIL PRESSURE LIMITATIONS

(Refer to tables in Chapter 5.8)

Engine operation tables (Chapter 5.8) give torque to be applied according to IOAT, in order not to exceed authorized maximum power.

When "INERT SEP" switch is OFF, a more accurate setting of power must then be performed according to cruise performance tables presented in Chapter 5.11.

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Power lever</td>
<td>As required TRQ less than 121.4 %</td>
</tr>
</tbody>
</table>
FLAP CONTROL TRANSITION FROM “850” TO “UP”

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Altitude</td>
<td>At or above 1500 ft AGL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In case of air leak between the solenoid valve and the torque limiter, the available torque might be below 100 %. Consequently, it is strongly recommended not to operate the flap control from “850” to “UP” below 1500 ft AGL.</td>
</tr>
<tr>
<td>2</td>
<td>Propeller RPM</td>
<td>2000</td>
</tr>
<tr>
<td>3</td>
<td>Power lever</td>
<td>TRQ less than 100 %</td>
</tr>
<tr>
<td>4</td>
<td>Flap control lever</td>
<td>From 850 to UP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The torque limiter is activated and limits torque to 110 %.</td>
</tr>
<tr>
<td>5</td>
<td>Power lever</td>
<td>As required</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TRQ less than 100 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2000 RPM)</td>
</tr>
</tbody>
</table>
AMPLIFIED PROCEDURES

DESCENT

1 - Altimeter settings COMPLETE

2 - ECS panel
 - Cabin altitude selector Airfield altitude + 500 feet
 - Cabin rate selector Adjusted
 Set first arrow upwards. This will limit cabin rate at about 500 ft/min.

3 - DE ICE SYSTEM As required
 Refer to Chapter 4.5
 "PARTICULAR PROCEDURES"

CAUTION

IF HEAVY PRECIPITATION, TURN IGNITION
AND INERT SEP ON

The maximum speed for changing the position of the inertial separator is 200 KIAS. Prior to descending into or through known or suspected icing conditions, select "INERT SEP" switch “ON” prior to accelerating beyond 200 KIAS. There are no special speed limitations with the inertial separator secured in either position.

4 - Windshield misting protection system As required
 Prior to descent in moist conditions, turn "AIR FLOW" distributor to 12 o'clock position and set WINDSHIELD switches to “ON” to avoid canopy misting.
 If misting continues, set "AIR FLOW" distributor to “HOT” or refer to Chapter 3.12 Paragraph "WINDSHIELD MISTING OR INTERNAL ICING".
AMPLIFIED PROCEDURES

DESCENT (Cont’d)

5. **Fuel**
 - Gages ... **CHECK**
 (Quantity / Symmetry)
 - Fullest tank .. **SELECT**

6. **Passengers briefing** **As required**

7. **Seats, belts and harnesses** **LOCKED**
BEFORE LANDING

Long final

1. Altimeters ... CHECK
2. Fuel gauges CHECK / CORRECT (Quantity / Symmetry)
 Maximum tolerated dissymmetry is 15 us gal (57 Litres).
3. "INERT SEP" switch (IAS ≤ 200 KIAS) ON
4. Propeller lever ... MAX RPM
5. Landing gear control (IAS ≤ 178 KIAS) DN

During the sequence:

- The red warning light flashes; it indicates that the landing gear motor is electrically supplied. It goes off when the 3 landing gears are locked. If the red warning light is fixed ON, there is a discrepancy (refer to EMERGENCY PROCEDURES).
- It is possible that the 3 landing gear position green indicator lights flash uncertainly then come on at the end of the sequence, indicating that the landing gears are locked in down position.
- Green indicator lights ... ON

6. Flaps (IAS ≤ 178 KIAS) TO
7. Lights
 - "L.LDG / TAXI / R.LDG" ON
AMPLIFIED PROCEDURES

BEFORE LANDING (Cont’d)

8 - Autopilot .. OFF
Autopilot must be disconnected at the latest at 200 ft above the
ground or at decision height or before go-around, whichever is the
highest.

9 - Radar switch (if installed) SBY

Short final

10 - Flaps (IAS ≤ 122 KIAS) LDG
However, when autopilot is engaged, in APR mode, with coupled
GS, flaps must be extended in landing position before crossing the
OUTER MARKER.

11 - Approach speed
(Flaps LDG) Weight < 6250 lbs (2835 kg) : 80 KIAS
Weight > 6250 lbs (2835 kg) : 85 KIAS
To ensure positive and rapid engine response to throttle movement,
it is recommended that a minimum of 10% torque be maintained on
final approach until landing is assured.

12 - “YAW DAMPER” push-button OFF
The pilot effort required to use the rudder pedals is reduced if the
yaw damper is turned off. This is particularly significant when
landing in a crosswind.
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LANDING</td>
<td></td>
</tr>
<tr>
<td>1 - Power lever</td>
<td>IDLE</td>
</tr>
<tr>
<td>Avoid three-point landings. Adopt a positive flight attitude in order to touch runway first with main landing gear.</td>
<td></td>
</tr>
<tr>
<td>After wheel touch</td>
<td></td>
</tr>
<tr>
<td>2 - Reverse</td>
<td>As required</td>
</tr>
<tr>
<td>(Reverse may be applied as soon as the wheels touch the ground.) To avoid ingestion of foreign objects, come out the reverse as speed reduces and use the brakes if necessary for further deceleration. High power reverse at low speed can throw loose material into the air, and can cause control problems and decrease the comfort of crew and passengers. If permitted by the runway length, it is better to adopt a moderate reverse.</td>
<td></td>
</tr>
<tr>
<td>CAUTION</td>
<td></td>
</tr>
<tr>
<td>USE OF CONTROL REVERSE BETA (β) RANGE (BEHIND THE FLIGHT IDLE POSITION) IS PROHIBITED DURING FLIGHT</td>
<td></td>
</tr>
<tr>
<td>ON SNOWY OR DIRTY RUNWAY, IT IS BETTER NOT TO USE REVERSE</td>
<td></td>
</tr>
<tr>
<td>3 - Brakes</td>
<td>As required</td>
</tr>
<tr>
<td>It is advised not to brake energetically, as long as speed has not reached 40 KIAS, as otherwise wheels may be locked.</td>
<td></td>
</tr>
</tbody>
</table>
AMPLIFIED PROCEDURES

GO-AROUND

1 - Simultaneously
 - Power lever TRQ = 100 %
 - Attitude 7°5
 The airplane will tend to yaw to the left when power is applied. Right rudder pressure will be required to maintain coordinated straight flight until the rudder trim can be adjusted.

2 - Flaps ... TO

 Weight below 6579 lbs (2984 kg)
 If speed has been maintained at 80 KIAS or more and TRQ 100 %, select TO flaps as soon as the 8° attitude has been attained.

 If the vertical speed is positive and if IAS is at or above 85 KIAS :

3 - Landing gear control UP
 All warning lights OFF

 If IAS is at or above 110 KIAS :

4 - Flaps ... UP

5 - Climb speed AS REQUIRED

 Weight above 6579 lbs (2984 kg)
 If speed has been maintained at 85 KIAS or more and TRQ 100 %, select TO flaps as soon as the 7°5 attitude has been attained.

 If the vertical speed is positive and if IAS is at or above 90 KIAS :

6 - Landing gear control UP
 All warning lights OFF
AMPLIFIED PROCEDURES

GO-AROUND (Cont’d)

If IAS is at or above 115 KIAS:

7 - Flaps .. UP

 In case of air leak between the solenoïd valve and the torque limiter, the available torque might be below 100 %. Consequently, it is strongly recommended not to select “850”:
 - for a new approach or visual circuit
 - for staying below 1500 ft AGL

8 - Climb speed ... AS REQUIRED
TOUCH AND GO

After wheel touch

1 - Flaps
Check that flaps have well reached the TO position before increasing power. Do not increase power with full flaps, as airplane may lift off prematurely at low speed.

2 - Elevator trim
Green sector
To use elevator trim manual control is faster than to use electric control. Ensure that runway length is sufficient to complete this sequence.

3 - Power lever
Display TRQ = 100 %

4 - Takeoff
ROTATION : See "Takeoff distances" Chapter 5.9
 - Normal takeoff
 - Short takeoff
 . Weight < 6579 lbs (2984 kg)
 . Weight > 6579 lbs (2984 kg)

ATTITUDE : 7°5

ATTITUDE : 15°

ATTITUDE : 12°5

Rotation speed at takeoff, according to airplane weight, is also given in Chapter 5.9.

However, the pilot’s operating handbook does not supply distances concerning touch and go. These distances are let to pilot’s initiative.

In case of air leak between the solenoid valve and the torque limiter, the available torque might be below 100 %. Consequently, it is strongly recommended not to select “850” position of the flap control lever:

- for a new approach or visual circuit
- for staying below 1500 ft AGL
AFTER LANDING

RUNWAY CLEAR - AIRPLANE STOPPED

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 -</td>
<td>DE ICE SYSTEM panel</td>
<td></td>
</tr>
<tr>
<td></td>
<td>"AIRFRAME DE ICE" switch</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>"PROP DE ICE" switch</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>"INERT SEP" switch</td>
<td>CHECKED ON</td>
</tr>
<tr>
<td></td>
<td>It is highly recommended to use inertial separator during all ground operations.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>"L.WINDSHIELD" switch</td>
<td>As required</td>
</tr>
<tr>
<td></td>
<td>"R.WINDSHIELD" switch</td>
<td>As required</td>
</tr>
<tr>
<td></td>
<td>"PITOT 1 HTR" switch</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>"PITOT 2 & STALL HTR" switch</td>
<td>OFF</td>
</tr>
<tr>
<td>2 -</td>
<td>Radar switch (if installed)</td>
<td>CHECKED SBY</td>
</tr>
<tr>
<td></td>
<td>Maintain radar (if installed) on SBY in order not to generate radiations prejudicial to outside persons.</td>
<td></td>
</tr>
<tr>
<td>3 -</td>
<td>Transponder</td>
<td>SBY</td>
</tr>
<tr>
<td>4 -</td>
<td>Flaps</td>
<td>UP</td>
</tr>
<tr>
<td>5 -</td>
<td>Lights</td>
<td></td>
</tr>
<tr>
<td></td>
<td>"L.LDG / R.LDG"</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>"TAXI"</td>
<td>ON</td>
</tr>
<tr>
<td>6 -</td>
<td>"STROBE" switch</td>
<td>OFF</td>
</tr>
<tr>
<td>7 -</td>
<td>"OXYGEN" switch</td>
<td>OFF</td>
</tr>
</tbody>
</table>
SHUT-DOWN

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Parking brake</td>
</tr>
<tr>
<td>2</td>
<td>"TAXI" light</td>
</tr>
<tr>
<td>3</td>
<td>Pressurization</td>
</tr>
<tr>
<td></td>
<td>"BLEED" switch</td>
</tr>
<tr>
<td></td>
<td>Check for cabin depressurization</td>
</tr>
<tr>
<td>4</td>
<td>"FAN FLOW" switch</td>
</tr>
<tr>
<td>5</td>
<td>"AIR COND" switch</td>
</tr>
<tr>
<td>6</td>
<td>Power lever</td>
</tr>
<tr>
<td></td>
<td>Before CUT-OFF, allow the engine to stabilize for a minimum of 1 min at minimum obtainable ITT.</td>
</tr>
<tr>
<td>7</td>
<td>GYRO INST panel</td>
</tr>
<tr>
<td></td>
<td>All switches</td>
</tr>
<tr>
<td>8</td>
<td>"EFIS MASTER" switch</td>
</tr>
<tr>
<td>9</td>
<td>"AP / TRIMS MASTER" switch</td>
</tr>
<tr>
<td>10</td>
<td>"RADIO MASTER" switch</td>
</tr>
<tr>
<td>11</td>
<td>Propeller governor lever</td>
</tr>
<tr>
<td></td>
<td>Keep propeller governor lever on FEATHER position for 15 seconds minimum before shutting down engine.</td>
</tr>
</tbody>
</table>
12 - Condition lever CUT OFF

CAUTION
IN CASE OF SHUT-DOWN ON A CONTAMINATED AREA :
- Condition lever CUT OFF
- Propeller governor lever FEATHER

13 - Fuel
When fuel pressure is below 10 psi, check "AUX BP" pump is operating.
- "AUX BP" switch OFF
- "FUEL SEL" switch MAN
- Tank selector OFF

14 - "INERT SEP" switch OFF

15 - INT LIGHTS panel
- All switches OFF

16 - EXT LIGHTS panel
- All switches OFF

17 - "GENERATOR" selector MAIN

18 - "SOURCE" selector OFF
INTENTIONALLY LEFT BLANK
4.5 - PARTICULAR PROCEDURES

REMARK:
The procedures and procedure elements given in this Chapter "PARTICULAR PROCEDURES" supplement the normal procedures or complete certain elements of the normal procedures described in Chapter(s) 4.3 and/or 4.4.

FLIGHT INTO KNOWN ICING CONDITIONS

General

1 - Icing conditions exist when the IOAT on the ground or in flight is + 13°C or below, and visible moisture in any form is present (clouds, fog with visibility of one mile (1.6 km) or less, rain, snow, sleed or ice crystals).

2 - Icing conditions also exist when the IOAT on the ground is + 13°C or below and when operating on ramps, taxiways or runways where surface snow, ice, standing water or slush may be ingested by the engine or freeze on engine or cowlings.

NOTE:
Refer to Figure 5.5.1 to convert IOAT to SAT in flight.
SAT = IOAT - 2°C on the ground.

3 - Flight into known icing conditions is authorized when all airplane equipment provided for ice protection is operating correctly. This includes:
- Pneumatic deice system for inboard and outboard wing, for stabilizers and for elevator horns.
- Propeller electrical deice system.
- Electrical heating system for both pitots and for the stall warning incidence sensor.
- Windshield electrical deice system.
- Inertial separator.

Description of deice systems is presented in Chapter 7.13.

Ice accumulation thickness is monitored by the pilot on the L.H. wing leading edge.

At night, a leading edge icing inspection light located on the fuselage L.H. side, activated by the "ICE LIGHT" switch, is provided.
PARTICULAR PROCEDURES

FLIGHT INTO KNOWN ICING CONDITIONS (Cont’d)

Boots are automatically cycling at the optimum time to assure proper ice removal. Correct operation of the system can be checked observing the corresponding green advisory light illumination at each boot inflation impulse. If correct operation cannot be confirmed, do not enter or leave as soon as possible icing conditions.

Apply "LEADING EDGES DEICING FAILURE" emergency procedure.

Ice protection procedures

1 - Prior to entering IMC, as a preventive:

 * If \(0°C < IOAT <+ 13°C\):
 - "PROP DE ICE" switch ... ON
 - "INERT SEP" switch ... ON

 * If \(-15°C < IOAT < 0°C\):
 - All "DE ICE SYSTEM" switches ON
 - "IGNITION" switch ... ON
 - "INERT SEP" switch ... ON

 * If \(-25°C < IOAT < -15°C\):
 - All "DE ICE SYSTEM" switches ON
 - "INERT SEP" switch ... ON

 * If \(IOAT < -25°C\):
 - "PROP DE ICE" switch ... ON
 - "INERT SEP" switch ... ON

When \(IOAT\) is below \(-25°C\), avoid operations of the "AIRFRAME DEICE SYSTEM" for a too long period because the boots could be damaged. The "INERT SEP" switch must be left ON while the airplane remains in icing conditions.

2 - When operating under IMC:

 - All "DE ICE SYSTEM" switches ON
 - "IGNITION" switch ... ON
 - "INERT SEP" switch ... ON
PARTICULAR PROCEDURES

FLIGHT INTO KNOWN ICING CONDITIONS (Cont’d)

CAUTION

SHOULD CONDITIONS REQUIRE IT, APPLY THESE DIRECTIVES FROM BEGINNING OF TAXI ONWARDS

CAUTION

DO NOT OPERATE THE INERTIAL SEPARATOR IF THE AIRSPEED EXCEEDS 200 KIAS. THERE IS NO SPEED LIMITATION WHEN THE INERTIAL SEPARATOR IS IN FIXED POSITION

If a high speed descent (> 200 KIAS) is anticipated into known icing conditions, position "INERT SEP" switch to ON before accelerating. This will avoid reducing speed below 200 KIAS during descent to set the inertial separator.

IF AIRPLANE LEAVES ICING CONDITIONS, MAINTAIN "INERT SEP" ON AS LONG AS ICE THICKNESS ON NON-DEICED VISIBLE PARTS EXCEEDS 15 mm (OR ½ INCH)

This will avoid ice fragments coming from propeller spinner and being ingested by engine.

INERTIAL SEPARATOR POSITION AFFECTS ENGINE PARAMETERS (PARTICULARLY TRQ AND ITT). CARE MUST BE EXERCISED WHEN OPERATING THE INERTIAL SEPARATOR OR WHEN INCREASING POWER WITH THE INERTIAL SEPARATOR ON, TO AVOID EXCEEDING ENGINE LIMITATIONS

NOTE:
"IGNITION" switch may be left ON for a long period.
Standby compass indications are altered when windshield deicing system(s) operate(s).
PARTICULAR PROCEDURES

FLIGHT INTO KNOWN ICING CONDITIONS (Cont’d)

3 - Procedures for holding, approach and landing in icing conditions:

- Minimum recommended speeds are:

<table>
<thead>
<tr>
<th></th>
<th>Weight</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< 6579 lbs (2984 kg)</td>
<td>> 6579 lbs (2984 kg)</td>
</tr>
<tr>
<td>Flaps UP</td>
<td>130 KIAS</td>
<td>135 KIAS</td>
</tr>
<tr>
<td>Flaps TO</td>
<td>110 KIAS</td>
<td>110 KIAS</td>
</tr>
<tr>
<td>Flaps LDG</td>
<td>90 KIAS</td>
<td>95 KIAS</td>
</tr>
</tbody>
</table>

- If there is ice on the unprotected surfaces of the airplane, during flight end phase, conduct holding with the flaps up. Use flaps as required for final approach and landing at minimum speeds noted above.

Ice accumulation effects

When ice has accumulated on the unprotected surfaces of the airplane, aerodynamic characteristics may be changed.

Particularly stall speeds may increase by up to:

- Flaps UP 20 KIAS
- Flaps TO 15 KIAS
- Flaps LDG 10 KIAS

Correct operation of the aural stall warning may be altered by severe or prolonged icing.

Indeed, in case of severe or prolonged icing, an ice concretion due to refreezing around the heated stall warning may appear. Above-recommended speeds take into account, on one side, the stall speed increase due to profile shape deterioration and, on the other side, the weight increase of the iced-up airplane (taking as a basis the airplane maximum weight when not iced-up).
PARTICULAR PROCEDURES

FLIGHT INTO KNOWN ICING CONDITIONS (Cont’d)

Rate of climb values with ice accumulation on the unprotected surfaces are to be decreased by 10%.

Cruise speeds may be decreased by 10%, if cruise power is not changed, or more, if cruise power setting should be decreased due to the additional inertial separator limitations (ITT limitation).

Because of the higher landing speed, landing distances will be increased. In the landing configuration, using 90 KIAS approach speed increases landing distance by 20% – refer to Chapter 5.14 "LANDING DISTANCES".
PARTICULAR PROCEDURES

FLIGHT INTO SEVERE ICING CONDITIONS

THE FOLLOWING WEATHER CONDITIONS MAY BE CONDUCIVE TO SEVERE IN-FLIGHT ICING:

- Visible rain at temperatures below 0°C ambient air temperature,
- Droplets that splash or splatter on impact at temperatures below 0°C ambient air temperature.

Procedures for exiting the severe icing environment

REMARK:
These procedures are applicable to all flight phases from takeoff to landing.

Monitor the ambient air temperature. While severe icing may form at temperatures as cold as -18°C, increased vigilance is warranted at temperatures around freezing with visible moisture present. If the visual cues specified in Section 2 "Limitations" for identifying severe icing conditions are observed, accomplish the following:

1 - Immediately request priority handling from Air Traffic Control to facilitate a route or an altitude change to exit the severe icing conditions in order to avoid extended exposure to flight conditions more severe than those for which the aircraft has been certificated.

2 - Avoid abrupt and excessive maneuvering that may exacerbate control difficulties.

3 - Do not engage the autopilot.

4 - If the autopilot is engaged, hold the control wheel firmly and disengage the autopilot.

5 - If an unusual roll response or uncommanded roll control movement is observed, reduce the angle-of-attack.
PARTICULAR PROCEDURES

FLIGHT INTO SEVERE ICING CONDITIONS (Cont’d)

6 - Do not extend flaps when holding in icing conditions. Operation with flaps extended can result in a reduced wing angle-of-attack, with the possibility of ice forming on the upper surface further aft on the wing than normal, possibly aft of the protected area.

7 - If the flaps are extended, do not retract them until the airframe is clear of ice.

8 - Report these weather conditions to Air Traffic Control.
PARTICULAR PROCEDURES

FLIGHT UNDER HEAVY PRECIPITATIONS

1 - "IGNITION" switch ... ON
This action is intended, in highly improbable case of an engine flame-out further to an important ingestion, to ensure immediate restarting without action of the pilot.

2 - "INERT SEP" switch .. ON

UTILIZATION ON RUNWAYS COVERED WITH WATER

If takeoff or landing must be performed on a runway covered with water:

1 - "IGNITION" switch ... ON

2 - "INERT SEP" switch .. ON
PARTICULAR PROCEDURES

UTILIZATION ON RUNWAYS COVERED WITH MELTING OR NOT TAMPED SNOW

Refer if required to paragraph "UTILIZATION BY COLD WEATHER AND VERY COLD WEATHER".

Preflight inspection

1 - Remove any snow or ice from the wings, stabilizers and movable surfaces, landing gear wells and gear doors, as well as flap tracks, actuators and their fairings.

2 - Spray anti-icing fluid on the wings, stabilizers and movable surfaces (upper and lower surfaces) and in the landing gear wells, shortly before takeoff.

Taxiing

1 - "INERT SEP" switch ON

2 - Taxi at very slow speed (max. 5 KIAS), flaps up, brake occasionally to maintain the brake pads warm (this will prevent any subsequent locking due to freezing after takeoff).

Before takeoff

1 - If the runway is long enough, takeoff should be performed with the flaps in the up position. In that case, rotation speed must be increased by 5 KIAS.

NOTE:
Takeoff distances must be increased to take into account the flap position (+ 15 % compared to the takeoff position) and the runway condition.
The ground roll may be multiplied by 3 in some melting or not tamped snow cases.

2 - "IGNITION" switch ON

3 - "INERT SEP" switch ON
PARTICULAR PROCEDURES

UTILIZATION ON RUNWAYS COVERED WITH MELTING OR NOT TAMPERED SNOW (Cont’d)

Takeoff
1 - Lightly lift up nose wheel during takeoff run in order to reduce the forward resistance due to snow accumulation against the wheel.
2 - After takeoff, normally retract the landing gear, then perform a complete cycle (extension / retraction) at IAS ≤ 128 KIAS.

Before landing
1 - "IGNITION" switch ... ON
2 - "INERT SEP" switch .. ON

Touch and Go
Prohibited

On the ramp, after landing or taxiing:
1 - Do not use the parking brake to prevent brake lock.
2 - Use chocks and / or tie-down the airplane.
PARTICULAR PROCEDURES

UTILIZATION ON ICY OR COVERED WITH TAMPED SNOW RUNWAYS

Refer if required to paragraph "UTILIZATION BY COLD WEATHER AND VERY COLD WEATHER".

Preflight inspection

1 - Remove any snow or ice from the wings, stabilizers and movable surfaces, landing gear wells and gear doors, as well as flap tracks, actuators and their fairings.

2 - Spray anti-icing fluid on the wings, stabilizers and movable surfaces (upper and lower surfaces), shortly before takeoff.

Taxiing

1 - "INERT SEP" switch ... ON

2 - Taxi at very slow speed (max. 5 KIAS).
 Use β area of power lever to adjust speed.
 Apply very smooth variations using power lever.

3 - Steer the airplane using the rudder.
 Make turns at a very low speed, engine torque tends to make the airplane turn to the left.

4 - Use brakes only at very low speed and progressively.

Before takeoff

1 - "IGNITION" switch ... ON

2 - "INERT SEP" switch ... ON

Takeoff

1 - After takeoff, normally retract the landing gear, then perform a complete cycle (extension / retraction) at IAS ≤ 128 KIAS.

Before landing

1 - "IGNITION" switch ... ON

2 - "INERT SEP" switch ... ON
PARTICULAR PROCEDURES

UTILIZATION ON ICY OR COVERED WITH TAMPED SNOW RUNWAYS (Cont’d)

Landing

After wheel touch

1 - Use reverse only if necessary and very progressively by monitoring
 the airplane behaviour.
 The engine torque tends to make the airplane turn to the left.

2 - Taxi at very slow speed (max. 5 KIAS).
 Use \(\beta \) area of power lever to adjust speed.
 Apply very smooth variations using power lever.

3 - Steer the airplane using the rudder.
 Make turns at a very low speed, engine torque tends to make the
 airplane turn to the left.

4 - Use brakes only at very low speed and progressively.

On the ramp, after landing or taxiing:

1 - Do not use the parking brake to prevent brake lock.

2 - Use chocks and / or tie-down the airplane.
PARTICULAR PROCEDURES

UTILIZATION BY COLD WEATHER (- 0°C TO - 25°C) AND VERY COLD WEATHER (- 25°C TO - 40°C)

REMARK:
The procedures hereafter supplement the normal procedures for the airplane use when operating under temperatures between 0°C and -40°C on ground.

Figure 4.5.1 - OPERATING ENVELOPES BY COLD WEATHER (- 0°C to - 25°C) AND VERY COLD WEATHER (- 25°C to - 40°C)
PARTICULAR PROCEDURES

UTILIZATION BY COLD WEATHER (- 0°C to - 25°C) AND
VERY COLD WEATHER (- 25°C to - 40°C) (Cont’d)

ENVELOPE 1

The procedures hereafter supplement the normal procedures for the airplane use when operating in the "envelope 1" defined in Figure 4.5.1.

Preflight inspection

1 - Remove any snow or ice from the wings, stabilizers and movable surfaces.

Apply, according to the condition of runways and taxiways, the procedures "UTILIZATION ON RUNWAYS COVERED WITH MELTING OR NOT TAMPED SNOW" or the procedures "UTILIZATION ON ICY OR COVERED WITH TAMPED SNOW RUNWAYS".

2 - Carry out a complete rotation of the propeller to check its free rotation.

3 - Do not perform a fuel draining. If the airplane is operating permanently under negative temperatures, drainings will have to be performed once a week after having parked the airplane in a heated hangar.

4 - Remove chocks and / or release ties from the airplane.

5 - Check the free deflection of the flight controls and of the elevator trim.

6 - Check the free deflection of the power lever and of the propeller governor lever.

Before starting the engine / Starting the engine / After starting the engine

Apply normal procedures defined in Chapter(s) 4.3 and / or 4.4.
PARTICULAR PROCEDURES

UTILIZATION BY COLD WEATHER (− 0 °C to − 25 °C) AND VERY COLD WEATHER (− 25 °C to − 40 °C) (Cont’d)

Taxiing / Before takeoff / Takeoff

1 - On "DE-ICE SYSTEM" panel:
 - "INERT SEP" switch .. ON

 WARNING LIGHT INERT SEP ON

 - "PITOT 1 HTR" switch ... ON
 - "PITOT 2 & STALL HTR" switch ON
 - "PROP DE-ICE" switch ... ON

2 - Apply normal procedures

3 - Apply, according to the condition of runways and taxiways, the procedures "UTILIZATION ON RUNWAYS COVERED WITH MELTING OR NOT TAMPED SNOW" or the procedures "UTILIZATION ON Icy OR COVERED WITH TAMPED SNOW RUNWAYS".

Landing / After landing

1 - Apply normal procedures defined in Chapter(s) 4.3 and / or 4.4.

2 - Apply, according to the condition of runways and taxiways, the procedures "UTILIZATION ON RUNWAYS COVERED WITH MELTING OR NOT TAMPED SNOW" or the procedures "UTILIZATION ON Icy OR COVERED WITH TAMPED SNOW RUNWAYS".

Shut down

1 - Parking brake ... RELEASED

 WARNING LIGHT PARK BRAKE OFF

 It is recommended not to use the parking brake by cold or very cold weather, so that the brakes do not stick when cooling.

2 - Apply normal procedures defined in Chapter(s) 4.3 and / or 4.4.

3 - Use chocks and / or tie-down the airplane using anchor points on ground.

4 - Put blanking caps and plugs on air inlets, exhaust stubs, pitots and static ports.
PARTICULAR PROCEDURES

UTILIZATION BY COLD WEATHER (-0 °C to -25 °C) AND
VERY COLD WEATHER (-25 °C to -40 °C) (Cont’d)

ENVELOPE 2

The procedures hereafter supplement or replace the normal procedures for the airplane use when operating in the "envelope 2" defined in Figure 4.5.1.

Preflight inspection

1 - Preheat the engine and the cabin.

Preheating the engine and the cabin during at least 30 minutes is necessary using a heater (70°C mini). Hot air pipes must be installed:
- in the air inlet,
- on engine rear table by opening the upper cowling,
- in the cabin by half-opening the door,
- in the R.H. front compartment for the EFIS versions during 10 minutes at the end of the engine preheating.

2 - Remove any snow or ice from the wings, stabilizers and movable surfaces.

Apply, according to the condition of runways and taxiways, the procedures "UTILIZATION ON RUNWAYS COVERED WITH MELTING OR NOT TAMMED SNOW" or the procedures "UTILIZATION ON ICY OR COVERED WITH TAMPED SNOW RUNWAYS".

- Spray anti-icing fluid on the wings, stabilizers and movable surfaces (upper and lower surfaces), shortly before takeoff.

3 - Carry out a complete rotation of the propeller to check its free rotation.

4 - Do not perform a fuel draining. If the airplane is operating permanently under negative temperatures, drainings will have to be performed once a week after having parked the airplane in a heated hangar.
PARTicular PROCedures

Utilization by cold weather (-0 °C to -25 °C) and very cold weather (-25 °C to -40 °C) (Cont’d)

5 - Remove chocks and / or release ties from the airplane.
6 - Check the free deflection of the flight controls and of the elevator trim.
7 - Check the free deflection of the power lever and of the propeller governor lever.

8 - "IGNITION" switch ON during 30 seconds

This enables to preheat spark igniters before starting the engine.

Before starting the engine

Apply normal procedures defined in Chapter(s) 4.3 and / or 4.4.

Starting the engine

The starting must be mandatorily performed using an external power source (GPU).

1 - Ground power unit CONNECTED
2 - "SOURCE" selector GPU

- Voltmeter VOLTAGE CHECKED (V = 28 Volts)
PARTICULAR PROCEDURES

UTILIZATION BY COLD WEATHER (- 0 °C to - 25 °C) AND
VERY COLD WEATHER (- 25 °C to - 40 °C) (Cont’d)

3 - Engine controls
 - "MAN OVRD" control OFF (Notched)

CAUTION
WHEN THE ENGINE IS SHUTDOWN, THE POWER LEVER
MUST NOT BE MOVED BEHIND THE FLIGHT IDLE
POSITION

- Power lever .. IDLE
 (Flight idle stop)
- Propeller governor lever Feather
- Condition lever CUT OFF

4 - Fuel panel
 - "AUX BP" switch ON

 WARNING LIGHT
 AUX BP ON ON
 WARNING LIGHT
 FUEL PRESS OFF

- Fuel pressure indicator Check

5 - Propeller AREA CLEAR

6 - "ENGINE START" panel
 - "IGNITION" switch ON

 WARNING LIGHT
 IGNITION ON

 - "STARTER" switch ON

 WARNING LIGHT
 STARTER FLASHING
PARTICULAR PROCEDURES

UTILIZATION BY COLD WEATHER (-0 °C to -25 °C) AND
VERY COLD WEATHER (-25 °C to -40 °C) (Cont'd)

Ng ≈ 13 %

- Condition lever HI / IDLE

Move directly condition lever to HI / IDLE

NOTE:
The more the temperature is low, the more the selector is hard to move.
Starter limits and checks of starting sequence are unchanged.

7 - Engine instruments Check NG = 69 % (± 2°)
(Oil pressure / ITT = green sector)

8 - "SOURCE" selector BAT

WARNING LIGHT BAT OFF

9 - "IGNITION" switch AUTO

WARNING LIGHT IGNITION OFF

10 - Ground power unit HAVE IT DISCONNECTED

WARNING LIGHT GPU OFF

11 - "FUEL" panel
- "AUX BP" switch AUTO

WARNING LIGHT AUX BP ON OFF

12 - Generator WARNING LIGHT

MAIN GEN OFF

RESET if necessary
PARTICULAR PROCEDURES

UTILIZATION BY COLD WEATHER (- 0 °C to - 25 °C) AND
VERY COLD WEATHER (- 25 °C to - 40 °C) (Cont’d)

After starting the engine

1 - On "ECS" panel
 As soon as the current flow is lower than 100 A :
 - "BLEED" switch ... HI
 - "CABIN TEMP/°C" selector FULL HOT

2 - Propeller governor lever
 As soon as the oil temperature is greater than 0°C :
 - Propeller governor lever MAX. RPM
 - Perform 2 propeller regulations

3 - Apply normal procedures defined in Chapter(s) 4.3 and / or 4.4.

Taxiing / Before takeoff / Takeoff
Apply procedures defined for Envelope 1.

Landing / After landing / Shut down
Apply procedures defined for Envelope 1.
PARTICULAR PROCEDURES

UTILIZATION BY COLD WEATHER (- 0 °C to - 25 °C) AND VERY COLD WEATHER (- 25 °C to - 40 °C) (Cont’d)

ENVELOPE 3

The procedures defined for the ”envelope 2” are also applicable for the ”envelope 3”. However it is possible to start the engine using GPU without preheating of the engine and the cabin with a heater. In that case the procedure ”After starting the engine” is modified as follows :

Preflight inspection / Before starting the engine / Starting the engine

Apply the procedures defined for the Envelope 2.

After starting the engine

1 - "ECS” panel

As soon as the current flow is lower than 100 A :

- "BLEED” switch .. HI
- "CABIN TEMP/°C” selector FULL HOT

Preheat the cabin respecting time defined in Figure 4.5.2 before switching on the navigation and monitoring systems. This allows to respect minimum temperatures necessary for the equipment operation.

2 - Propeller governor lever

As soon as the oil temperature is greater than 0°C :

- Propeller governor lever MAX. RPM
- Perform 2 propeller regulations

3 - Apply normal procedures defined in Chapter(s) 4.3 and / or 4.4.
PARTICULAR PROCEDURES

UTILIZATION BY COLD WEATHER (- 0 °C to - 25 °C) AND VERY COLD WEATHER (- 25 °C to - 40 °C) (Cont'd)

Taxiing / Before takeoff / Takeoff

Apply procedures defined for Envelope 1.

Landing / After landing / Shut down

Apply procedures defined for Envelope 1.

Complement

If landing is foreseen by cold or very cold weather, or in case of prolonged operation of the airplane in such conditions, it is recommended to prepare the airplane as specified in Chapter 8.9.

![Graph of Cabin preheating duration vs. OAT (°C)](image)

Figure 4.5.2 - PREHEATING DURATION
PARTICULAR PROCEDURES

LANDING PROCEDURE WITH STRONG HEADWIND OR CROSSWIND

If landing must be performed with strong headwind or crosswind, increase approach speed by the greatest of these 2 following values:

\[\Delta V = \frac{(\text{WIND DOWN} - 10)}{2} \]
(Ex. WIND DOWN = 30 kt i.e. \(\Delta V = 10 \) kt)

The wind down is the longitudinal component of the wind.

- Gust amplitude

Use flaps LDG.

It is not desirable to adopt configuration with flaps TO. Lateral control is not improved, and flare phase is lengthened in time and in distance, with increase of piloting difficulties and landing performance.

During approach with crosswind, maintain airplane in drift correction at the latest until the beginning of flare.

In short final, on a short runway, it is necessary to use normal approach speed (80 KIAS) with flaps LDG, in order to avoid an excessive speed. Indeed, in this case, landing distance indicated in Chapter 5.14, would not be respected.

Before touch-down, generate a slideslip with the rudder in order to align fuselage with the runway (ie left crosswind, left wing low).

Do not use or select the fuel tank on the low wing side during prolonged sideslips with a fuel low warning or gage indicating low.

Retract flaps immediately after landing.

Flap travel is slow and will not have an appreciable effect on landing performance.
PARTICULAR PROCEDURES

LANDING PROCEDURE WITH STRONG HEADWIND OR CROSSWIND (Cont’d)

Do not try to stabilize the airplane by pushing down the elevator control just after the touch; this operation may provide pitch oscillations while increasing the yaw movement to the wind.

Do not deflect ailerons into wind while taxiing. This will raise spoilers and have a detrimental effect. A good solution is to maintain ailerons to neutral position during second taxi phase after landing and during first taxi phase before takeoff.

Maximum demonstrated crosswind for landing is 20 kt.

The most restrictive situation is as follows:
- takeoff with wind coming from the left,
- wet runway,
- aft C.G.
PARTICULAR PROCEDURES

UTILIZATION ON GRASS RUNWAY

CAUTION
THE SMALL WHEELS OF THE AIRPLANE AND ITS WEIGHT MAY
LEAD IT TO SINK IN SOPPY OR LOOSE GROUND

Before planing the landing, ensure that the field is hard, smooth and dry enough. Landing and, a fortiori, takeoff shall not be envisaged if any doubt exists about the condition of such a runway.

Particular directives

TAXI / TAKEOFF

1 - "INERT SEP" switch ... ON

2 - Reverse ... Do not use
In fact, on a flat runway with grass, it is necessary to adopt a power greater than the one obtained when the power lever is set to IDLE, so the pilot will not be tempted to use the reverse.

LANDING

1 - "INERT SEP" switch ... ON

After wheel touch down :

2 - Reverse ... Only if necessary
Do not maintain reverse at speeds below 40 KIAS to avoid ingestion of foreign matter.

Indeed, under this speed, using the reverse makes a cloud of solid particles (dusts, sand, gravels, trocken grass, and so on ...) appear around the front face of the airplane. This will damage the propeller and, after ingestion, the engine internal components (compressor and turbine blades).
PARTICULAR PROCEDURES

OPERATION IN RVSM CONDITIONS

After altitude capture, in altitude hold mode of the autopilot, discrepancy between desired altitude and held altitude must be adjusted using the vertical trim control in order not to exceed ± 20 ft.

In RVSM area, the transponder # 1 must be used first.