Operations on PFC/grooved runways
Improved Stopping Distances on specifically prepared runways

Presented by
Maud MIGNARDOT
Performance Engineer
Introduction

- Some runways have specific surface treatment
 - Better water drainage when raining
 - Restore of braking friction coefficient close to dry runway when runway is wet

- Two main types of runway surface treatment
 - Porous Friction Course
 - Grooves
Introduction

Santos Dumont, Brazil

Luton, England

Gibraltar, England

Florence, Italy
Airworthiness Authorities Requirements

- Possibility to use grooved or porous friction course data (credit of performance)

- To take benefit of grooved or porous friction course, the runway have to be designed, constructed and maintained in a manner acceptable to the Authority

- Acceptable guidance for design, construction and maintenance of grooved or PFC runway
 - FAA AC 1505320-12C or CAA CAP 683 or equivalent

- Operational approval should be obtained by the operator from their operational authorities
Airworthiness Authorities Requirements

- Method of demonstrating stopping distance on wet runway depends upon the Airworthiness Authorities

 - FAA
 - Braking distance based on results of testing on wet runway (grooved or porous friction course)

 - EASA
 - Analytical method

- Both methods permit a factor of AFM Landing Distance to be less than 1.92 (wet smooth) but not less than 1.67 (dry)
Airworthiness Authorities Requirements

- **Farnborough campaign (certification FT)**
 - Goal: Improved landing performance on wet runway
 - Brazilian certif. for Santos Dumont Airport for A319 and A320.
 - Porous Friction Course
 - Flight Tests dated 1999

- **Gibraltar campaign (development FT)**
 - Goal: Improved landing performance on wet runway
 - Grooved Runway
 - Flight Tests dated 2001
Certified Aircraft Performance

- Aircraft models and runways currently certified with credit of performance

<table>
<thead>
<tr>
<th>Aircraft Models</th>
<th>Runway Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>A320-232/-233</td>
<td>SANTOS-DUMONT</td>
</tr>
<tr>
<td>A319-131/-132/-133</td>
<td>SANTOS-DUMONT</td>
</tr>
<tr>
<td>A319-111/-112/-115</td>
<td>FLORENCE</td>
</tr>
<tr>
<td>A319-111</td>
<td>LUTON</td>
</tr>
<tr>
<td>A320-211/-212/-214</td>
<td>GIBRALTAR</td>
</tr>
<tr>
<td>A320-232/-233</td>
<td></td>
</tr>
</tbody>
</table>

- Airbus now offers credit of performance for generic grooved or porous friction course runways
Certified Aircraft Performance

- Impact on **takeoff** performance

![Graph showing impact on takeoff performance with different runway lengths and MTOWs.](Image)

- **MTOW (kg)**
 - DRY
 - WET
 - WET GVD/PFC

- **Runway length (m)**
 - 1500
 - 1700
 - 1900
 - 2100
 - 2300
 - 2500
 - 2700
 - 2900

IAE 22000lb
OPT CONF
CWY=200m
OAT=10°C
Certified Aircraft Performance

- Impact on **takeoff** performance

![Graph showing takeoff performance impact](image)

IAE 22000lb
OPT CONF
CWY=200m
OAT=10°C

- DRY
- WET GVD/PFC
- WET

Certified Aircraft Performance Data:
- Wt = 70100kg
- Wt = 69700kg
- Runway length = 2000m
Certified Aircraft Performance

- Impact on **landing** performance

![Graph showing RLD (ft) vs Weight (1000kg)]

- DRY
- WET
- WET GVD/PFC

IAE 27000lb VLS CONF FULL Zp = 0ft
Certified Aircraft Performance

- Impact on **landing** performance

Graph

- **IAE 27000lb**
- VLS
- CONF FULL
- Zp = 0ft

<table>
<thead>
<tr>
<th>Weight (1000kg)</th>
<th>46</th>
<th>48</th>
<th>50</th>
<th>52</th>
<th>54</th>
<th>56</th>
<th>58</th>
<th>60</th>
<th>62</th>
</tr>
</thead>
<tbody>
<tr>
<td>1100m DRY</td>
<td>47</td>
<td>49</td>
<td>51</td>
<td>53</td>
<td>55</td>
<td>57</td>
<td>59</td>
<td>61</td>
<td>63</td>
</tr>
<tr>
<td>1200m DRY</td>
<td>57</td>
<td>59</td>
<td>61</td>
<td>63</td>
<td>65</td>
<td>67</td>
<td>69</td>
<td>71</td>
<td>73</td>
</tr>
<tr>
<td>1300m DRY</td>
<td>60.6</td>
<td>62.6</td>
<td>64.6</td>
<td>66.6</td>
<td>68.6</td>
<td>70.6</td>
<td>72.6</td>
<td>74.6</td>
<td>76.6</td>
</tr>
<tr>
<td>1400m DRY</td>
<td>64</td>
<td>66</td>
<td>68</td>
<td>70</td>
<td>72</td>
<td>74</td>
<td>76</td>
<td>78</td>
<td>80</td>
</tr>
<tr>
<td>1500m DRY</td>
<td>68</td>
<td>70</td>
<td>72</td>
<td>74</td>
<td>76</td>
<td>78</td>
<td>80</td>
<td>82</td>
<td>84</td>
</tr>
<tr>
<td>1600m DRY</td>
<td>72</td>
<td>74</td>
<td>76</td>
<td>78</td>
<td>80</td>
<td>82</td>
<td>84</td>
<td>86</td>
<td>88</td>
</tr>
<tr>
<td>1700m DRY</td>
<td>76</td>
<td>78</td>
<td>80</td>
<td>82</td>
<td>84</td>
<td>86</td>
<td>88</td>
<td>90</td>
<td>92</td>
</tr>
<tr>
<td>WET</td>
<td>57</td>
<td>59</td>
<td>61</td>
<td>63</td>
<td>65</td>
<td>67</td>
<td>69</td>
<td>71</td>
<td>73</td>
</tr>
<tr>
<td>WET GVD/PFC</td>
<td>57</td>
<td>59</td>
<td>61</td>
<td>63</td>
<td>65</td>
<td>67</td>
<td>69</td>
<td>71</td>
<td>73</td>
</tr>
<tr>
<td>DRY</td>
<td>60.6</td>
<td>62.6</td>
<td>64.6</td>
<td>66.6</td>
<td>68.6</td>
<td>70.6</td>
<td>72.6</td>
<td>74.6</td>
<td>76.6</td>
</tr>
</tbody>
</table>

Legend
- Red line: WET
- Pink line: WET GVD/PFC
- Blue line: DRY
Documentation and Software

- Operational Documentation
 - FM impact
 - Takeoff: new certified software
 - Landing: paper data only
 - FCOM impact
 - RLD published in 2.03.10 chapter

- Software (PEP / LPC)
 - Takeoff already implemented
 - Landing planned for 4th Quarter 2006
Conclusion

- Improved stopping distances when runway surface specially prepared

- Generic Certified Airbus Aircraft performance is now available
 - Usual channel: RFC (Request For Change)

- Upon request to local Authorities, this certified set of performance can be used if runway has relevant characteristics