Why this Subject?

- Provide a brief introduction to aviation fuel definitions and characteristics
- Familiarize you with terminology and industry jargon
- Address operational concerns related to fuel
- Inform you of research work and possible future fuels
- Exchange some insight into the Energy of Flight
Jet Fuel Characteristics

Topics

• Oil Distillation
• Types of Aviation Fuel
• Specifications
• Composition of Fuel
• Fuel Properties
• Non-Normal Situations
• Alternative Fuels
Jet Fuel Characteristics

Distillation of Crude Oil

1 Barrel of Crude = 42 U.S. gallons

Jet fuel (about 5 U.S. gallons)

Co-generation

Gasoline

LPG

Diesel fuel

Bunker oil

Coke

Sulfur

1 Barrel of Crude = 42 U.S. gallons
Types of Aviation Fuel

- Aviation Gasoline - AvGas
- Turbine Fuels
Aviation Gasoline (AvGas)

- Reciprocating Engines Only
- Rated by Octane - 80/87, 100/130, 115/145 - Red, Blue, Purple
- Commercial Specification - ASTM D 910
Jet Fuel Characteristics

Turbine Fuels
‘Commercial Grades’

- Jet A “Kerosene Type”, freeze point -40°C (U.S. domestic only)
- Jet A-1 “Kerosene Type”, freeze point -47°C
- Jet B “Wide Cut”, freeze point -50°C
Jet Fuel Characteristics
‘Military Grades (U.S.)’

- JP-4 “Wide Cut”, similar to Jet B
- JP-5 Higher flash point for carrier operations
- JP-7 Thermally Stable for SR-71 higher temperatures
- JP-8 “Kerosene Type”, similar to Jet A-1
- JP-9 Missile fuel (higher energy per unit volume)
Commercial Turbine Fuel Specifications

- Industry/Government specifications
- American Society for Testing and Materials (ASTM)

ASTM D1655 Jet A, Jet A-1, Jet B
Commercial Turbine Fuel Specifications

![Table of Commercial Turbine Fuel Specifications](image)

Table 1: Commercial Turbine Fuel Specifications

<table>
<thead>
<tr>
<th>Property</th>
<th>Specification</th>
<th>Unit</th>
<th>Min.</th>
<th>Max.</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td></td>
<td>g/cm³</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viscosity</td>
<td></td>
<td>cSt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flash Point</td>
<td></td>
<td>°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Firepoint</td>
<td></td>
<td>°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pumping Temperature</td>
<td></td>
<td>°C</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The table above provides detailed specifications for commercial turbine fuel.

Table 2: Additional Commercial Turbine Fuel Specifications

<table>
<thead>
<tr>
<th>Property</th>
<th>Specification</th>
<th>Unit</th>
<th>Min.</th>
<th>Max.</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfur Content</td>
<td></td>
<td>%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen Content</td>
<td></td>
<td>%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxygen Content</td>
<td></td>
<td>%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ash Content</td>
<td></td>
<td>%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Additional specifications include sulfur content, nitrogen content, oxygen content, and ash content for commercial turbine fuel.

Additional Information:
- **Flash Point:** Minimum (Flexibility)
- **Firepoint:** Maximum (Firepoint)
- **Pumping Temperature:** Recommended (Recommended Temperature)

General Notes:
- All values are approximate and subject to change.
- For specific applications, consult the manufacturer's specifications.
- Always perform routine maintenance and inspection.
- Ensure compliance with local regulations and standards.

References:
- Manufacturer's Technical Manual
- Industry Standards
- Regulatory Guidelines

Contact Information:
For inquiries, please contact [Manufacturer’s Support Line](supportline@email.com).
Commercial Turbine Fuel Specifications (cont.)

- International Air Transport Association (IATA guidance material) IATA ADD76-1 “Kerosene Types” and “Wide Cut”

“Kerosene Types”
Jet A-1 Specifications

- British - DERD.2494 (AVTUR)
- Canadian - CAN/CGSB 3.23-M86
- French - AIR 3405/C
- Russian - GOST 10227-86 T-1, TS-1 (TS-1 freeze point -50º to -60ºC)
- Romanian - 3754/73, CS-3, STAS 5639
Jet Fuel Characteristics

“Wide Cut”
Jet B Specifications

- British - DERD.2486 (AVTUR)
- Canadian - CAN/CGSB 3.22-M86
- French - AIR 3407/B
- Russian - GOST 10227-86, T-2
- German - TL 9130-006 Issue 6
Engine Manufactures
Specifications

- General Electric - Specification No. D50TF2
- Pratt & Whitney - Service Bulletin No. 2016
- Rolls-Royce - Appendix 2 to Engine Operating Manual
- FAA/JAA Approved Airplane Flight Manual
Jet Fuel Characteristics

Airplane Flight Manual

ENGINE LIMITATIONS (Continued)

ENGINE FUEL SYSTEM

The approved fuel is designated in the CEM6-3 Series Installation Manual, as revised. Fuel conforming to commercial Jet A fuel specification ASTM-D-1655, Jet A-1 and Jet B are authorized for unlimited use in this engine. Fuels conforming to MIL-T-5624 for grades JP-1 and JP-5, and to MIL-T-83133 grade JP-8 are acceptable alternatives. The engine will operate satisfactorily with any of the foregoing fuels or any mixture thereof.

The maximum tank fuel temperature is 45°C (113°F).

In-flight tank fuel temperature must be maintained at least 3°C (5°F) above the freezing point of the fuel being used or -45°C (-49°F) whichever is higher.

Anti-icing fuel additive PFA 5250 at a concentration not to exceed 0.15 percent by volume may be used. No fuel system anti-icing credit is allowed.

ENGINE OIL SYSTEM

Minimum oil pressure is 13 psi. If engine oil pressure is in the yellow band with takeoff thrust set, do not takeoff.

Maximum oil temperature limit for continuous operation is 160°C.

Maximum oil temperature is 165°C. Operation between 160°C and 165°C is limited to 15 minutes.

The approved oil is designated in the CEM6-3 Service Bulletin 79-001, as revised.

See Non-Normal Procedures, Section 3.2, for oil pressure below 13 psi.

ENGINE OPERATION IN RAIN, HAIL, OR SLEET

When flight in moderate or heavy rain, hail or sleet is encountered or anticipated, engine start switches must be set to FLIGHT and a minimum 45°N1 must be maintained except on short final when landing is assured.

* Applicable to airplanes that have not incorporated CFM Service Bulletin 77-410, "ENGINE - FAN ASSY - INTRODUCTION OF A NEW SPLITTER FAIRING", 77-652, "ENGINE - GENERAL - REINTRODUCTION OF THE 12 VIEW DOORS CONFIGURATION", 72-579, "ENGINE - FAN AND BOOSTER REPLACEMENT OF THE CONICAL SPINNER BY AN ELLIPTICAL SPINNER", and 77-833, "ENGINE - GENERAL - INTRODUCTION OF NEW SYSTEM MODIFICATIONS", on both engines. Incorporation of Boeing Service Bulletin 737-71-1273 is required when the above CFM service bulletins are not incorporated.

REVERSE THRUST

Use for ground operation only. Intentional selection of reverse thrust in flight is prohibited.
Jet Fuel Characteristics

Airplane Flight Manual

PERFORMANCE CONFIGURATION

The airplane configuration as presented under Performance Configuration, Section 4.1, must be observed.

Approved tires that are capable of at least 235 MPH true ground speed must be installed in order to utilize the maximum structural and performance-limited takeoff weights. The main gear tires must be 6x9 x 19-22 with at least a 56,400-pound rated load (32 ply or greater rating). Brake nose gear tires are 49 x 17 tires with at least a 50,400-pound rated load (32 ply or greater rating).

OPERATIONAL LIMITS

Runway slope -- 3\%/4%

Maximum Takeoff and Landing Tailwind Component -- 15 knots*
Minimum Operating Altitude -- 45,160 feet pressure altitude
Maximum Takeoff and Landing Altitude -- 10,000 feet pressure altitude
Takeoff, Landing, and Enroute Operational Limitations -- use Environmental Envelope chart, Section 4.1

* The capability of the airplane has been satisfactorily demonstrated for takeoff and manual landing with tailwinds up to 15 knots. This finding does not constitute operational approval to conduct takeoffs and landings with tailwind components in excess of 10 knots.

FUEL DENSITY LIMITATIONS

The available range of fuel densities for the 747-400 is 6.0 pounds per gallon to 7.1 pounds per gallon. For densities less than 5.45 pounds per gallon, the gross weight is limited as shown on page 9 of this section.
Jet Fuel Characteristics

Airplane Flight Manual

757

ENGINE THROTTLE

EPR values for Takeoff and Maximum Continuous Thrust are presented on the appropriate Thrust Setting charts in Section 4.2.

The maximum operational limits are:

N1 - Low Pressure Compressor Rotor 108.8% (5 Mins) 108.4% (Continuous)
N2 - Intermediate Pressure Compressor Rotor 100.3% (5 Mins) 98.0% (Continuous)
N3 - High Pressure Compressor Rotor 99.0% (5 Mins) 95.8% (Continuous)

Maximum Overspeed (20 Seconds) N1 - 115.0%; N2 - 101.0%; N3 - 100.2%

ENGINE DOT

Operating Condition Temperature Limits Time Limit
Takeoff 855 deg C 5 Minutes
Maximum Continuous 795 deg C Continuous
Starting, Ground and Flight 570 deg C Momentary, 2 SEC.
Overtemperature 870 deg C 3D Seconds

ENGINE LIMIT DISPLAY MARKINGS

Maximum and minimum limits.............Red
Precautionary range.................Amber

The engine limit display markings on ECAM may be used to determine compliance with the maximum and minimum limits and precautionary ranges. If ECAM markings show more conservative limits than those specified above, the limit markings shown on ECAM must be observed.

ENGINE FUEL SYSTEM

The fuel designation is per Rolls-Royce O.I. F-211 (335E4) -B, Appendix 2.

The maximum tank fuel temperature is 19 deg C (120 deg F), except JP-4 or JET B which is 29 deg C (85 deg F).

Tank fuel temperature must be maintained at least 3 deg C above the freezing point of the fuel being used or ~ 80 deg. (F or C), whichever is higher.

Jet Fuel Characteristics - Performance Engine Operations
Jet Fuel Characteristics

Airplane Flight Manual

Certificate Limitations

Engine Fuel System

The maximum tank fuel temperature is 49 deg C (120 deg F) except JP-4 or Jet B which is 62 deg C (140 deg F).

Inflight tank fuel temperature must be maintained at least 3 degrees C above the freezing point of the fuel being used.

Anti-icing fuel additive FAA 5580B at a concentration not to exceed 0.15 percent by volume may be used. No fuel system anti-icing credit is allowed.

Engine Ignition

On for takeoff and landing.

Engine Oil System

Minimum oil pressure is 35 psi.

Maximum oil temperature is 163°C. Operation between 135°C and 163°C is limited to 20 minutes.

The oil designation is Pratt & Whitney Service Bulletin 238, as revised.

Reverse Thrust

Use for ground operation only. Intentional selection of reverse thrust in flight is prohibited. Backing the airplane with use of reverse thrust is not permitted.
Jet Fuel Characteristics

Turbine Fuel Composition

Four groups of Hydrocarbons in Jet Fuel:

- Paraffins, Isoparaffins, Cycloparaffins
- Aromatics
- Naphthalenes
- Olefins
Other Fuel Constituents

- Sulfur - corrosion and emissions
- Gums - filter clogging and sticky valves
- Water - corrosion and filter clogging
- Naphthenic Acid - corrosion
Fuel Additives

- Approved Additives only
- Antioxidants
- Metal Deactivators
- Fuel System Icing Inhibitors
- Corrosion Inhibitors
- Static Dissipators
Turbine Fuel Properties

- Density (Specific Gravity SG)
- Lower Heating Value (LHV)
- Viscosity
- Lubricity
- Low Temperature
- Volatility
- Electrical
- Bulk modulus
- Thermal Oxidation Stability
- Material Compatibility
- Toxicity
Density, Specific Gravity

- **Density** = Mass/Volume
- **Specific Gravity (SG)** also known as Relative Density
 - Typical Jet A, Jet A-1: SG = 0.815
 - Typical Jet B: SG = 0.764
- Varies with temperature
- °API = (141.5/SG) - 131.5
- SG measured with hydrometer per ASTM D1298
- Airplane Densitometers
Lower Heating Value (LHV)

- LHV = Net Heat of Combustion (BTU/lb)
- Jet A: 18,484 - 18,645 (ave. 18564)
- Density relationship to LHV
- Performance analysis based on 18,580 BTU/lb
- Boeing Airplane Performance Monitoring program (APM) input
5.7.4 Fuel Lower Heating Value Correction to Fuel Flow

Purpose: To correct fuel lower heating value to a nominal value of 18,580 BTU/lb. The user may alter the relationship between specific gravity and fuel lower heat value. The relationship exists as the equation of a line given as $y = mx + b$, where x is the specific gravity, m is the slope and b is the y-intercept. The slope and y-intercept may be input in the User-Input file as LHV M and LHV B respectively. If no slope or y-intercept are input the default values of -5220 and 22777 are used. If the actual value of LHV is known, it may be placed in the CONFIG section of the database, see Appendix 2 for details.

Inputs:
- S.G.: Specific Gravity
- T_{Fuel}: Fuel Temperature (°C)
- p_{Fuel}: Fuel Density (lb/ft³)
- LHV: Lower Heating Value (18580 BTU/lb)
- M: LHV Equation Slope (default -5220)
- B: LHV Equation y-Intercept (default 22777)

From LHV = Mx + B Where x = Specific Gravity

Algorithm:
Step 1. $S.G. = (0.0005)(T_{Fuel} - 15.56) + p_{Fuel}$

 8.3282

Step 2. $LHV = -5220(S.G.) + 22777$

 or

 $LHV = M(S.G.) + B$

Step 3. $W_{Corr} = W_{Calc} \times (LHV_{ref} / LHV)$
Fuel Lower Heating Value Estimation

FUEL LOWER HEATING VALUE ESTIMATION SPECIFIC GRAVITY CORRELATION

DENSITY @ 60°F = DENSITY * 0.0063 * (1 - 15.50)
WHERE: T = FUEL SAMPLE TEMP IN °C
SG @ 60°F = DENSITY @ 60°F / 8.3283 LB/ICAL

EQUATION OF LINE:
LHV = -5220(SG @ 60°F) + 22777

0.5% ADJUSTMENT

BOEING NORMAL VALUE = 18550 Btu/lb
Jet Fuel Characteristics

Viscosity

- Fuel line pressure drop and pumping capabilities
- Low temperatures increase viscosity
- Measuring units are Centistokes (mm²/sec)
Fuel Lubricity

- Controls, valves, bearing, pumps
- Low viscosity prevents hydrodynamic film
- Absorbs into surface - Boundary layer lubricants
- Refining removes lubricants (thermally stable fuels, SR-71)
- Corrosion inhibitors augment Lubricity
Low Temperature Properties

- Freeze Point (wax crystals disappear)
- Pour Point (1.5 inch cylinder test)
 (4°C to 20°C below Freeze Point)
- Cloud Point (haze forms)
- Fuel will not flow when indicated temperature is below pour point
- Fuel starts to solidify when recovery temperature is below pour point
- Operational Considerations
Operational Considerations

- Pilots must maintain fuel temperature at least 3°C above fuel freeze point
- Low temperature operations is a concern for fuel transfer, boost pump inlets and in fuel lines
- The rate at which the fuel temperature declines is a function of air temperature, airplane geometry, fuel management schedule and time
- Fuel temperature will approach the recovery temperature
- Recovery Temperature is slightly lower than TAT
- TAT and Recovery Temperature are a function of ambient air temperature and Mach
Jet Fuel Characteristics

Lowest Fuel Temperatures

<table>
<thead>
<tr>
<th>Fuel Type</th>
<th>Freeze Point</th>
<th>Minimum Recovery Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jet A</td>
<td>-40°C</td>
<td></td>
</tr>
<tr>
<td>Jet A-1</td>
<td>-45°C</td>
<td></td>
</tr>
</tbody>
</table>

Initial fuel temperatures:
- Jet A: +5°C
- Jet A-1: -18°C

Range-Nautical Miles

747

The Boeing Company
Increasing use of Polar Routes

777 Demonstration Flight:
15 hours 22 minutes total flight time
At 10 hours into the flight, OAT = -64°C, TAT = -35°C, Recovery Temp = -38°C. The lowest fuel temperature was -32°C at 11 hours into the flight.
Jet Fuel Characteristics

Actual Fuel vs. Specification

- Freeze Point of actual fuel varies from day-to-day and airport-to-airport
- Actual delivered fuel might have freeze point as much as 40% better than specification
- Pilot must observe specification value unless test results are known
Operational Response to Cold Fuel

- Increase Mach (.01 Mach is 0.5ºC)
- Divert around cold air mass
- Descend to lower (warmer) altitude (extreme cases may require 25,000 ft at .85 Mach)
- Dispatch with known fuel freeze point
Cold Fuel Flow Research

Fuel Properties

Jet Fuel Characteristics

Bulk tank temperature (airplane probe)

Fuel pour point

Low-convection, ‘mushy’ zone

$q_{\text{total}} \approx 30 \text{ W/m}^2$

$10^2 < q_{\text{total}} < 10^3 \text{ W/m}^2$

with ~ 20 W/m² latent heat release
Cold Fuel Summary

- Fuel Tank tests at cold temperatures
- Computer Models of tank cooling - Fuel Temperature Prediction Program (FTPP)
- IATA is reviewing ASTM/GOST testing procedures
- Fuel additives being considered
- Fuel Freeze points are being monitored in U.S.
- IATA team to audit fuel quality around the world
- Future system to monitor fuel freeze points at airports on-line, real time. (Phase Technology)
Volutility

- Tendency to change from liquid to vapor
- Reid vapor pressure
- Relative to Jet A-1 at 60°F:
 - Jet B vapor pressure is 1,750% higher
 - AvGas vapor pressure is 4,600% higher
Jet Fuel Characteristics

Electrical

- Dielectric constant (fuel quantity)
- Electrical Conductivity
Jet Fuel Characteristics

Flammability and Ignition Characteristics

- Flammability vs. Altitude
- Flash Point
Bulk Modulus

- Fuel is used as hydraulic fluid in servo valves
- Jet A-1: 193 kpsi
- Airplane hydraulic fluid (Skydrol): 210 kpsi
Gums and Deposits

Fuel additives to reduce thermal degradation (thermally stable fuels only, SR-71)

Commercial grades controlled by specification
Material Compatibility

Metals

• Satisfactory
 – Aluminum and alloys
 – Carbon steels
 – Stainless steels

• Unsatisfactory
 – Bronze
 – Nickel
 – Copper
 – Zinc
 – Cadmium

Packing and gaskets

• Satisfactory
 – Nylon
 – Polyethylene

• Unsatisfactory
 – Fluorothene
 – Vinylite
 – Teflon
Jet Fuel Characteristics

Toxicity

- Not highly toxic
- Handle with Care
Non-Normal Situations
Mixing of Fuels

- Jet A and Jet B - Ok, increased volatility
- Mixing Jet A and Jet A-1 raises freeze point significantly towards that of Jet A
- AvGas - Vapor pressure, boil off, cavitation, fueling dangers, hot section deposits, lubrication
- Diesel/heating oils - Cold flow, viscosity, freeze point
Airplane Fuels
Net Heat of Combustion

Net Heat, MJ/kg

Av. Gas
Jet A,
Jet A-1
Jet B,
JP-4
JP-5
JP-7
Thermally Stable

44.6
44.4
44.2
44.0
43.8
43.6
43.4
43.2
43.0
42.8
42.6
42.4
42.2
42.0

Figure 28
Net Heat of Combustion - Aircraft Fuels
Airplane Fuels
Vapor Pressure

Figure 28
Vapor Pressure - Aircraft Fuels
Future Fuels

- Hydrogen
- Methane
- Synthetic Fuels (about 4 times more expensive)
A pound of hydrogen has almost three times the energy of a pound of conventional fuel.
Questions?
Survey of Aviation Turbine Fuels

Figure 1

- Department of Energy survey (United States sources)
- Airline survey (world-wide sources)
- (some points removed for clarity)
Fuel Energy Content Versus Fuel Density

We recently received a question on the relationship between fuel energy content and fuel density. The question came from an airline reviewing its fuel tankering policy. Like most other operators, this particular airline's fuel tankering policy assumes constant fuel density, and the airline felt that unless a change in fuel density was accompanied by an equivalent change in fuel energy content, the tankering analysis would not be valid.

Before addressing the fuel tankering problem, we think it may be of interest to discuss how fuel density and energy content may affect airplane performance and flight operations.

Fuel density does not have much direct bearing on flight operations because all performance data are based on a fuel weight—pounds, kilos, tons, pounds per hour, nautical miles per pound, etc. This includes fuel load, trip fuel, reserves. Operations Manual performance, computer flight plans, and so on. Fuel volume is not used because it would be necessary to account for density. Fuel density may appear in load sheet calculations for some models, and has an obvious impact on full tank or volume limited operations. The one place where fuel density is important is in working out the fuel bill. Dispatch, or the captain, requests the required fuel uplift by weight; the amount of fuel pumped on board is measured by volume; and the total cost of the load of fuel is based on a price per unit volume, dollars per gallon for example. This is part of the fuel tankering problem. By assuming constant fuel density in the tankering calculations it has also been assumed that if the fuel price is the same at departure and destination airports, then a given amount of money will buy the same weight of fuel at each location.

The other part of the tankering problem is that constant fuel energy content is assumed, which implies that a given weight of fuel will always propel the airplane for the same number of miles. The fuel energy content, or fuel lower heating value (LHV), is usually expressed in units of British Thermal Unit per pound of fuel (BTU/lb.). The fuel consumption is inversely proportional to the LHV, for example, a 1% decrease in LHV would reduce the fuel mileage by 1%, and increase fuel flow by 1%.

During performance flight testing, a fuel sample is taken from each tank before flight and the average LHV is determined by laboratory tests. The performance data are then adjusted to a reference LHV. The Boeing Operations Manual and Performance Engineers' Manual are based on the same reference LHV.

Our current policy is to use a reference value of 18,580 BTU/lb., which is the average for fuel surveys made by the U.S. Department of Energy (DOE) for various U.S. fuel sources.

Figure 1 shows a plot of the DOE results for 1980-1981 plus data provided to Boeing by a major international airline for worldwide fuel survey. The figure shows the relationship between fuel density and energy content. In general, lighter fuels have a higher energy content but for a given volume the lighter fuel does not produce the same energy. For example, fuel with density 6.9 lb./gallon has an energy content of about 18,480 BTU/lb., thus one gallon of fuel produces 127,370 BTU’s.

Lighter fuel, with 6.65 lb./gallon density, has an energy content of 18,680 BTU/lb., so one gallon of this fuel only produces 124,200 BTU’s.

In spite of the possible variations in fuel density and energy content, as illustrated in Figure 1, we do not consider the overall effect on routine flight operations to be significant. The effects on trip fuel are small and are no greater that other unknown or unaccounted factors, such as instrumentation accuracy, weights, winds, CG, etc. We do, however, recommend that if a “problem” airplane is being checked with calibrated instruments, accurate fuel loads, etc., then then it is probably worth while to take fuel samples and to determine the LHV of the fuel.

With regard to the original fuel tankering question, the airline does have a point. To make a totally valid tanker analysis a
correction for density and LHV should be made. The LHV correction is difficult since the LHV for the particular fuel load can only be determined after the flight by laboratory analysis. It may be possible, however, to combine density and energy effects into a single correction, based on Figure 1 variation, which could be referenced to density only. However, this may be unnecessarily complicated, particularly since the fuel density of the destination airport is probably unknown. Our general recommendation on tankering fuel is that this should not be done unless the price advantage is really significant. This would allow for unknowns such as wear and tear on airframe, wheels, tires, engines, etc., and for fuel density and energy content variations.