INTRODUCTION

The Global landing gear system is a retractable tricycle type consisting of two main landing gear assemblies and a steerable nose landing gear assembly. Each assembly is equipped with a conventional oleopneumatic shock strut. On the ground, all three landing gear assemblies are secured with gear locking pins. The landing gear is fully enclosed when the gear is retracted.

Normal extension and retraction is electrically controlled by the Landing Gear Electronic Control Unit (LGECU) and hydraulically operated by systems 2 and 3.

Emergency extension of the landing gear system is enabled through the Landing Gear Manual Release System handle in the flight compartment.

Each landing gear assembly has twin wheels and tires. The main wheels have hydraulically powered and electrically actuated carbon brakes, controlled through a brake-by-wire system. Main landing gear overheat detection is available. Antiskid protection and automatic braking is provided.

The main and nose landing gear assemblies use proximity sensors to provide air and ground sensing. This is accomplished by two sensors (referred to as weight-on-wheels or WOW) on each assembly.

All hydraulically actuated doors, uplocks, downlocks and nose shock strut (centering) use sensors to determine their position for gear operation.

Landing gear status and position is visually displayed on EICAS and aurally annunciuated in the flight compartment. The antiskid, nosewheel steering indication and status are also displayed on EICAS and interface with the Central Aircraft Maintenance Information System (CAIMS) for failure detection and isolation. Brake temperature monitoring is displayed on the EICAS status display.
DESCRIPTION

MAIN LANDING GEAR

Each main landing gear assembly consists of:

• Main fitting
• Trailing arm
• Side brace actuator
• Extension/retraction actuator
• Uplock mechanism
• Oleopneumatic shock strut
• Door linkages

Each main gear retracts inward and up into the main landing gear bay and is mechanically held in the retracted position by an uplock mechanism. The gear is mechanically locked in the extended position by internal locking side brace actuators. During normal operation, the uplock and down lock mechanisms are hydraulically actuated to release the main gear.

Hydraulic System 3 is maintained to the side brace actuators while the gear is extended. This serves as a secondary safety feature.
The main landing gear is completely enclosed by four doors. Two outboard doors (one for each main) hinged to the belly fairing are mechanically linked to the outboard section of each main gear assembly and positioned to the open and closed position with each main gear operation. Two inboard doors (one for each main) are hinged to the keel (center) beam of the airplane. The inboard doors are hydraulically operated to open on selection of gear retraction or extension and to close when the gear is fully up or down. The inboard doors can be deployed by the manual release system for ground maintenance operations when required.

Hydraulic system No. 3 is used to release all gear and door uplocks, downlocks, nose gear actuator (extension and retraction), and main gear side brace actuators during normal extension. The main gear extension/retraction actuators (used to raise and lower the main gear) are powered by hydraulic system No. 2 and will also assist gear extension for manual gear operation. A manual extension of the gear can be achieved by pulling the landing gear manual release handle located on the pedestal in the flight compartment. For operation, refer to MANUAL GEAR EXTENSION in this chapter.

The main gear doors, sequencing and position sensing, are controlled and continuously monitored by the LGECU. Any fault or position deviation detected is displayed on EICAS.

WHEEL ASSEMBLIES

The airplane has four (carbon type) braked main wheels, two per main gear and two free rolling nose wheels. The main and nose wheels are fitted with tubeless tires. Four heat sensitive fuse plugs are installed in each main wheel to release excessive air pressure caused by heat build-up in the wheel/tire assembly.

Two brake wear indicator pins are installed on each brake assembly to provide a visual indication of brake wear. When the end of the wear indicator pin is flush with the top of the indicator housing, the brake must be serviced.

NOTE

The brake wear indicator pin must be checked with the parking brakes applied and No. 3 hydraulic system pressurized. It can also be checked with both systems 2 and 3 pressurized and normal brakes applied. However, this second method requires two people to do the check.
MAIN GEAR/DOOR DOWNLOCK SAFETY PIN

A downlock safety pin is installed at the end of the side brace assembly to secure the main landing gear in position while on ground. A door locking pin is available for installation on the inboard door actuator assembly, if required during maintenance operations.

MAIN LANDING GEAR OVERHEAT DETECTION

The main landing gear overheat detection system consists of single-loop heat sensing elements, installed in both main landing gear bays. The overheat detection system continuously monitors the heat sensing elements in the main landing gear area. Any overheat condition or system fault detected by the monitoring system is annunciated on EICAS in the form of a main landing gear bay overheat warning message, or main landing gear overheat fail caution message. Refer to Chapter 9, FIRE PROTECTION for additional information on main landing gear bay overheat fault and fail messages.

If the main landing gear system detects an overheat condition it will be accompanied with a warning voice advisory as follows:

The main landing gear overheat detection system and fault conditions may be tested through the Electrical Management System or EMS in the flight compartment. Refer to Chapter 7, ELECTRONIC DISPLAY SYSTEM. Test result messages are displayed on EICAS.
LANDING GEAR BAY OVERHEAT SCHEMATIC

NOSE LANDING GEAR ASSEMBLY

The nose gear assembly consists of:

- Oleopneumatic shock strut (main fitting)
- Hydraulic extension/retraction actuator
- Uplock mechanism
- Drag brace including a downlock mechanism
- Set of nose gear doors and linkages
The nose gear bay is completely enclosed by an aft door, mechanically linked to the nose gear, and by two hydraulically-actuated forward doors. During normal operation, the forward doors open only during gear retraction and extension (transit) operation. The forward doors can be manually opened by the manual release system and can be opened for ground maintenance operation when required. The aft door is mechanically linked to the nose gear and positioned to the open and closed position with each main gear operation.

The nose gear retracts forward into the nose bay area and is held in the retracted position by an uplock mechanism. During normal operation, a downlock actuator and assist springs within the drag brace ensure downlock when the gear is extended. The
nose gear is actuated by hydraulic system No. 3 to operate the uplocks (gear and door),
downlocks and actuators.

In the event of a hydraulic system failure, a dedicated operating system provides a
means to manually extend (free fall) the gear. As with the main gear, emergency
extension of the nose gear is achieved by pulling the same landing gear manual release
handle located on the pedestal in the flight compartment. Downlock of the nose gear is
achieved through a mechanical locking device. Two downlock assist springs mounted
on the drag brace assist nose gear extension. System No. 3 hydraulic pressure to the
nose gear is retained while in the extended position.

The nose hydraulically actuated doors, sequencing and position sensing are controlled
and continuously monitored by the LGECU. Any fault or position deviation detected
is annunciated on EICAS.

NOSE GEAR DOWNLOCK SAFETY PIN
A downlock safety pin is installed within the drag brace assembly to secure the nose
landing gear in position while on ground.

LANDING GEAR ELECTRONIC CONTROL UNIT (LGECU)
The Landing Gear Electronic Control Unit (LGECU) consists of two subsystems
which perform:
• All landing gear control and indication, including WOW
• Landing gear and landing gear door operations
• Control and indication and fuselage door status functions. For fuselage door
 indications, refer to Chapter 1, AIRPLANE GENERAL
LGECU SYSTEM SCHEMATIC

LGECU CONTROL

The LGECU receives gear position commands from the landing gear control handle in the flight compartment. The handle is compared with actual gear position and WOW for each landing gear assembly. The landing gear system includes proximity sensors for gear and door positioning, and locked position monitoring.
The EICAS monitors the information received from the LGECU and generates status and warning messages when certain conditions are met.

The landing gear door, control and indications system provides three basic functions:

- **Landing gear sequencing control** – The system performs logic on handle position, landing gear and door positions, WOW and gear lock inputs. It provides the signals that command the landing gear, landing gear door and lock actuators that change the position of the landing gear based on this input logic.

- **Landing gear, door and fuselage door position indication** – The system monitors door position inputs, landing gear door inputs, landing gear position inputs and provides indication of the position status of airplane doors and landing gear.

- **Weight-On-Wheels indication** – The system monitors landing gear strut compression (sensor input) and provides indication of the air or ground status of the airplane. Weight-On-Wheel sensors on each landing gear assembly report to the LGECU and are divided into two classifications, WOW 1 and WOW 2 inputs. In addition, the system monitors its own circuitry and provides fault information to the Central Aircraft Information Maintenance System (CAIMS) and/or EICAS system.

The LGECU is divided into two subsystems which provide control and indication to the landing gear system.

Subsystem A functions include:
- WOW 1 (WOW sensor input logic)
- Landing gear control and secondary position indication
- Landing gear door control

Subsystem B functions include:
- WOW 2 (WOW sensor input logic)
- Landing gear primary position indication
- Landing gear door indication
- Fuselage door status
LGECU CONTROL SCHEMATIC

EICAS

SUBSYSTEM A
- Landing Gear Control
- Landing Gear Up Indication (Primary)
- Landing Gear Unsafe Indication (Primary)
- Landing Gear In Transition Indication (Primary)
- Landing Gear Down Indication (Primary)
- Door Indication

SUBSYSTEM B
- Landing Gear Up Indication (Secondary)
- Landing Gear Unsafe Indication (Secondary)
- Landing Gear In Transition Indication (Secondary)
- Landing Gear Down Indication (Secondary)
- Door Indication (Fuselage)
LANDING GEAR CONTROL SYSTEM

The landing gear control panel is located on the center pedestal. The landing gear control handle is located in the center of the control panel and is equipped with a solenoid lock which prevents inadvertent up selection with the airplane on the ground (WOW) signal. In the event of a solenoid lock malfunction (in flight), a down-lock release switch (DN LCK REL) on the landing gear control panel permits up selection of the handle by overriding the solenoid lock.

LANDING GEAR CONTROL PANEL

The landing gear position indication is removed from EICAS 30 seconds after all landing gear slats, and flaps indicate up and locked, and other system faults (example: gear, spoilers, brakes, slat/flap) do not exist.
LANDING GEAR INDICATION

The status of the landing gear and landing gear bay doors is determined by the LGECU using inputs from various proximity sensors. The resulting output is sent to the EICAS which monitors the condition and position of each system.

The position of each of the three landing gear is pictorially indicated by three symbols on the EICAS display primary page. The gear up symbol for each gear is the word UP in white letters, enclosed by a white outlined box. The gear in transit icon for each gear is amber cross hatching enclosed by an amber outlined box. The gear down symbol for each gear are the letters DN in white, enclosed by a solid green circle.

A GEAR DISAGREE caution message is posted on the primary page if any of the following conditions occur:

- Any one gear remains in transit for more than 28 seconds, the respective rectangle remains amber
- The position of at least one gear does not agree with landing gear control lever during normal transit
- The landing gear control lever is left in the up position during manual extension.

An amber NOSE DOOR or L-R MAIN GEAR DOOR caution message will be posted on the primary page if one of the following conditions exist:

- Any door indicates not closed for longer than 30 seconds during extension or retraction
- Any door indicates not closed for more than one second at any other time
If any one gear remains in transit for more than 28 seconds, the respective rectangle remains amber and GEAR DISAGREE is posted on the primary page as a caution. The gear down, in transit and disagree conditions are displayed as long as the condition exists. The gear UP display is removed from the primary page 30 seconds after the flaps are retracted and brake temperatures are normal.

During normal extension and retraction, the landing gear will display an amber “GEAR DISAGREE” message, if the gear does not indicate a locked position within 30 seconds of selection.

The LGECU of the landing gear system monitors all gear functions. Any deviation from the selected gear configuration or failure of the uplocks or downlocks is annunciated on EICAS in the form of visual and aural messages. The following are examples of the landing gear, indicating that it is not in its commanded state:

Each landing gear symbol will display dash marks when the gear information is unreliable.
LANDING CONFIGURATION WARNING

The “Too low gear” aural warning through Enhanced Ground Proximity Warning System (EGPWS) is heard if:

- Any landing gear is not down and locked
- Radio altitude less than 500 feet above ground level, and the indicated airspeed less than 190 knots

Gear Warning Horn

The gear warning horn has been designed with a logic circuit that maximizes protection against a possible gear up landing while minimizing nuisance warnings. On approach, a gear warning horn will normally sound if any gear is not down and locked. Various speed, altitude and configuration conditions govern whether or not the normal gear warning horn is either inhibited, mutable or not mutable. The following tables detail the general logic behind gear horn operation.
LANDING GEAR HORN WARNING LOGIC

Primary Mode

- ANY GEAR NOT DOWN AND LOCKED
- RADALT < 500'
- RADALT < 1,000'
- RADALT < 500'
- ANY GEAR NOT DOWN AND LOCKED
- ≥ 400 FPM DESCENT
- ≥ 190 Kts (EGPWS)
- ≥ 30°

Voice alert: "GEAR" (Priority over "GEAR")

Voice alert: "TOO LOW GEAR"

NOT MUTABLE
LANDING GEAR HORN WARNING LOGIC
Secondary Mode

BELOW 16,500' AND ANY GEAR NOT DOWN AND LOCKED AND NO SERVICEABLE RADALT

Voice alert: “GEAR"

< 165 Kts AND - FLAPS = 0° - BOTH THROTTLES IDLE - NOT MUTABLE - (ONE THROTTLE IDLE) - MUTABLE

< 191 Kts AND - FLAPS > 0° - BOTH THROTTLES IDLE - NOT MUTABLE - (ONE THROTTLE IDLE) - MUTABLE

ANY SPEED AND - FLAPS COMMANDED TO 30° - THROTTLES ANY POSITION - NOT MUTABLE

BELOW 1,000' AND - > 400 FPM DESCENT RATE - NOT MUTABLE

NO SERVICEABLE RADALT BELOW 1,000' AND - FLAPS > 0° - BOTH THROTTLES IDLE - NOT MUTABLE - (ONE THROTTLE IDLE) - MUTABLE

Bombardier Global Express - Landing Gear & Brakes
GEAR WARNING HORN “MUTED” SWITCH

A “MUTED” switch is located on the landing gear control panel. It is used to disable the gear warning horn under certain airplane configurations with both radio altimeters inoperative. The “MUTED” switch is inoperative with at least one radio altimeter valid.

The gear warning horn is not mutable under any of the following conditions:

- When activated by flap position
- Both throttles at idle
- Radio altimeter(s) valid

The landing gear warning horn function is restored after it has been muted if any of the following conditions are met:

- Both throttles are advanced above idle
- All the landing gears are down and locked
- Flaps are commanded to 30°

RETRACTION AND EXTENSION SYSTEM

Normal retraction or extension of the landing gear is initiated by landing gear control lever selection. The retraction or extension signal is sent to the LGECU which monitors various landing gear proximity sensing inputs and weight-on-wheels (WOW) inputs. If the correct parameters are met, the LGECU sequentially energizes the appropriate selector valves to retract or extend the landing gear using hydraulic pressures No. 2 and No. 3.
LANDING GEAR RETRACTION

For landing gear retraction, once the airplane is airborne (i.e.: weight-off-wheels, nosewheel centered), the LGECU commands and monitors the following events:

- Landing gear control lever solenoid downlock releases to permit up selection of the landing gear control lever

- The door selector valve is energized and hydraulic system No. 3 powers all door uplocks and door actuators

- When the doors indicate open, the nose landing gear and main landing gear selector valves are energized

- Hydraulic system No. 3 releases the respective downlocks and completely retracts the nose landing gear (extension/retraction actuator). Hydraulic system No. 2 will power the main gear extension/retraction actuators and completely retracts the main landing gear assemblies. The side brace actuator is energized only to disengage the internal downlocks during retraction

- The Brake Control Unit will command the brake control valves (for approximately 4 seconds after takeoff) to pressurize the brakes and stop main wheel rotation

- Uplocks of the nose landing gear and the main landing gear are engaged to secure the landing gears in the retracted position

- When uplock is achieved, the nose and main landing gear doors selector valves are energized to close the nose and main landing gear doors. The gear selector valves are de-energized when the gear is up and locked
LANDING GEAR EXTENSION

For landing gear extension, the LGECU commands and monitors the following events:

- Landing gear control lever is manually selected to the DN position

- The door selector valve is energized and hydraulic system No. 3 powers all door uplocks and door actuators

- When the doors indicate open, the nose landing gear and main landing gear selector valves are energized

- Hydraulic system No. 3 releases the respective uplocks and extends the nose landing gear (extension/retraction actuator). Hydraulic system No. 2 will power the main extension/retraction actuator to extend the main landing gear and at this time the side brace actuator remains de-energized

- When the main landing gear is almost down (sensed by proximity) the extension/retraction actuator powered by hydraulic system No. 2 is de-energized. At the same time, the main landing gear (side brace actuator) is energized, using hydraulic system No. 3 to power the gear to the downlock position

- Downlocks of the nose landing gear and the main landing gear are engaged to secure the landing gears in the extended position

- When downlock is achieved, the nose and main landing gear doors selector valves are energized to close the nose and main landing gear doors. The nose and main gear selector valves remain energized to keep a positive pressure on the downlock mechanisms
MANUAL LANDING GEAR EXTENSION

Should a failure occur in the normal actuation system, landing gear extension is possible by pulling the landing gear manual release handle located on the center pedestal in the flight compartment. The design configuration allows the system to be restowed to its initial position under any conditions by simply reversing the manual release handle movement.

NOTE

Manual landing gear extension is carried out with the landing gear control lever in the down position.

For manual extension procedures, refer to the non-normal procedures, MANUAL LANDING GEAR EXTENSION in the Airplane Flight Manual CSP 700-1.

NOTE

1) The landing gear manual release handle will ratchet from the stow to the extend position upon selection. The handle will lock in a given detent position if released during extension only.
2) When the handle is selected to stow following a full extension, the handle will not ratchet (lock) if released. When the PUSH FULLY TO STOW button is pushed, care should be taken to guide the handle (under spring tension) to its fully stowed position.
Manual Release Sequence

The following is the sequence of events which occur during manual landing gear extension:

- Landing gear manual release handle PULL to full extension
- System No. 3 shutoff valve blocks pressure to all hydraulically operated gear door uplocks and the landing gear uplocks
- Dump valve opens, transferring hydraulic system No. 3 pressure from all gear and door actuators to return
- The main gear doors and uplocks are mechanically released

Within approximately one to two seconds following full extension of the manual release handle:

- Both main landing gear extension/retraction actuators are pressurized by hydraulic system No. 2 (through the action of the system No. 2 alternate power valve) to assist main gear downlock

The nose landing gear door and gear uplocks are mechanically released

- The nose landing gear is permitted to free-fall and is assisted by springs within the drag brace to achieve downlock
NOTE

With all gear indicating down and locked, the left and right main and nose gear doors, and nose door remain open. L-R MAIN GEAR DOOR and NOSE DOOR caution message will be displayed.

• Upon successful completion of manual gear extension, the manual release handle is to remain fully extended
Landing Gear Manual Release Schematic

The following schematic is an overview of the manual gear lowering system.
NOSEWHEEL STEERING SYSTEM

The steering control system is electrically controlled and hydraulically actuated.

The nosewheel steering system is armed from a switch on the landing gear control panel in the flight compartment. It is activated once the WOW signal and nose landing gear down-and-locked signals are present. Steering commands are input to the Steering Control Unit (SCU) through the pilot’s hand wheel (full authority ± 75°) and/or the rudder pedals (limited authority ± 7.5°).

NOTE

If handwheel and rudder pedal input commands are received at the same time, the SCU will sum these inputs to a maximum of ± 75°.

Nosewheel position feedback is provided to the SCU by two transducers mounted on the steering actuators. The SCU controls an electrohydraulic servovalve in the hydraulic manifold (mounted on the nose gear assembly), which ports hydraulic pressure to each of the steering actuators as required. The steering actuators (mounted on the main fitting of the nose gear) operate in a push/pull manner to rotate the steering collar. Mechanical torque links are provided to transmit the movement of the steering collar to the nose wheels.

The steering commands are processed by the SCU and hydraulic system No. 3 pressure is routed through the system when the landing gear is selected down.

In the air mode, the nose wheel is centered electrically by the SCU and mechanically by centering cams as the shock strut extends under its own weight.

When the steering system is disarmed or with no WOW signal, the nosewheel steering will revert to free caster and shimmy damping to ensure stability within the nosewheel circuit. In the free caster mode of operation, steering is accomplished only through differential braking and differential thrust.

The SCU continuously monitors the nosewheel steering system and any fault within the system will be displayed as a caution message. Fault detection will result in nosewheel steering system shutdown and the system will then operate in free caster mode of operation.
NOSEWHEEL STEERING SCHEMATIC

- NOSEWHEEL STEERING MANIFOLD
- HYDRAULIC SYSTEM NO. 3
- LGECU
- WOW
- NOSE LANDING GEAR DOWN AND LOCKED
- STEERING MANIFOLD
- STEERING ACTUATORS
- TO EICAS
- RUDDER PEDALS
- NOSEWHEEL STEERING SWITCH
- STEERING TILLER PILOT'S SIDE PANEL
BRAKE CONTROL SYSTEM

The main wheels have carbon disk brakes. They are controlled by the Brake Control Unit (BCU) using an antiskid system with autobraking capability.

Refer to BRAKE CONTROL SCHEMATIC of this chapter to support the information that follows.

The brake control system provides hydraulic services to the outboard (hydraulic system 2) and the inboard braking systems (hydraulic system 3). Hydraulic system 3 will also provide pressure to all brakes via shuttle valves for parking/emergency brake application. Brake systems 2 and 3 have an accumulator (backup) for emergency operation in case of hydraulic system failure. Hydraulic volumetric fuses are installed at each brake supply line to provide system protection against line rupture.

Two brake shutoff valves control the inlet pressure to the brake control valves and are used to:

- Turn off hydraulic power to the brake control valves during flight
- Shut off pressure in the event of uncommanded braking

The hydraulic inlet porting of the brakes has a shuttle valve. Brake shuttle valves are used to isolate brake control function from park/emergency brake function. Four shuttle valves are used, one for each brake. The shuttle valve provides the higher of the two input pressures (either brake control/antiskid or parking/emergency brake) to the brake.

Pilot and/or co-pilot brake input is provided by four brake pedal transducers. The signal is processed by the electronic Brake Control Unit (BCU) and commands appropriate brake pressure. If a failure or unreliable signal is present, a pilot/co-pilot brake fault message will display on EICAS. Wheel speed is monitored by four transducers installed in each main wheel axle and these signals are used for antiskid control valve operation. The brake and antiskid control system interfaces with the BCU for autobrake capability.

The BCU provides the brake control system with built-in-test equipment (BITE) and the following protections:

- Gear retract braking (stops wheel rotation, after takeoff)
- Inhibiting normal gear braking in flight
- Independent wheel antiskid
- Locked wheel, and touchdown protection

In the air mode (no WOW signal) the BCU configures the airplane to a full brake dump to prevent wheel lock-up on touchdown. The touchdown protection system is canceled to allow modulated braking once a predetermined wheel spin-up signal is present or airplane WOW is detected. The BCU will cancel hydraulic power to any wheel which is sensed to be at an abnormal deceleration rate (i.e. locked wheel).
The dual brake control system independently controls the braking of each main wheel by modulating the pressure outputs of the appropriate brake control valve. This modulation is controlled by the BCU which monitors individual wheel speed and deceleration through the wheel speed transducers.

Available inboard and outboard brake pressure supply is continuously monitored and displayed on the EICAS hydraulic synoptic page, and any abnormal brake pressure detected is displayed on EICAS in the form of a message.

PARK/EMERGENCY BRAKE

Selection of the PARK/EMER BRAKE handle mounted on the center pedestal will allow the flow of hydraulic system No. 3 pressure to the shuttle valves of all brake assemblies and apply the brakes. Mechanical linkages, connected by a push/pull cable, transfer manual inputs from the parking brake lever to the parking brake valve. For parking brake application extend the handle to its full extended (lock) position. A pressure switch provides a parking brake applied signal to the BCU and messages to the EICAS.
Emergency proportional braking can also be commanded through the same handle. No antiskid protection is available when emergency braking is selected. Emergency brake application is based on the amount of travel selected by the pilot. A slow steady pull is recommended for best results.

Flight Compartment indication of hydraulic No. 3 pressure (Hydraulic synoptic page), provides indication for normal brake pressure, parking brake, hydraulic No. 3 failure, or emergency brake application.

If the normal brake system fails, it will be accompanied by a warning voice advisory and a warning NORM BRAKE FAIL message.

Park/Emergency Brake Takeoff Configuration

A takeoff configuration warning in the form of a voice advisory NO TAKEOFF and a red EICAS message PARK BRAKE ON will be annunciated if the PARK/EMER BRAKE handle is set and the throttles advanced for takeoff.
BRAKE CONTROL SCHEMATIC

The following schematic is an overview of the components contained within the brake control system.
AUTOBRAKE SYSTEM

Autobrake function is provided for landing only. A flight compartment mounted AUTOBRAKE switch provides selection of three deceleration levels and an OFF position. The switch is spring loaded to the OFF position when not activated or disabled. The three deceleration levels are indicated as LO, MED, and HI (4, 8 and 13 ft/sec²).

AUTOBRAKE PANEL

Deceleration rates are calculated from the reference wheel speed. If the rate difference is more than a predetermined rate of knots, it will cancel the autobrake function and the switch will return to the OFF position automatically.

All of the following conditions must be met to “arm” the autobrake and hold the switch in the selected position:

• Switch selected to either LO, MED, or HI
• Airplane in the flight mode of operation (i.e.: WOW indicating air)
• No deploy command for the ground lift dump spoilers
• Brake pedal command for application travel less than 20%
• Wheel speed at zero velocity
• No autobrake or brake control faults

The autobrake will apply when all of the following conditions are met:

• Autobrake switch selected to either LOW, MED, or HI
• Both MLG weight on wheels for greater than 5 seconds or wheels spin-up greater than 50 knots
• Ground spoilers commanded to deploy

The autobrake will “disarm” (release the deceleration control and command the AUTOBRAKE switch to rotate to the OFF position) under any of the following conditions:

• Autobrake switch selected to OFF at any time
• Brake pedal application of greater than 20% travel
• Any autobrake or brake control fault during autobrake operation
• Wheel speed signal invalid (comparison of channel A and B of the BCU)
• Ground spoilers stowed after having been deployed
BRAKE TEMPERATURE MONITORING UNIT

The Brake Temperature Monitoring System (BTMS) consists of four sensors each mounted in a brake housing and the Heater current/Brake temperature Monitor unit (HBMU). Brake temperature is indicated in the flight compartment on the EICAS status display when the landing gear is selected down. A BTMS OVHT WARN RESET button is located on the landing gear control panel and is used to reset the system when the condition no longer exists. Brake cooling charts will determine the safe range of operation. Refer to brake cooling chart in the Airplane Flight Manual CSP 700-1.

BRAKE TEMPERATURE MONITORING SCHEMATIC
The BTMU turns the corresponding display (on the EICAS status page) red when a brake overheat condition exists, and when the wheels are approaching the fuse plug release temperature. If fuse plug release occurs, the wheel assembly will release the tire pressure to atmosphere.

A red Warning EICAS message (BRAKE OVHT) accompanies the overheat condition. The spring-loaded BTMS OVHT WARNING RESET button is mounted to the left of the landing gear control handle. Once an overheat warning has been triggered, momentarily pressing the reset, removes the warning, provided the condition no longer exists (indicators showing below the red range).
EICAS MESSAGES

GEAR
 Indicates a landing attempt with any of the landing gear not down and locked. This message will remain posted as long as the condition exists.

MLG BAY OVHT
 Main wheel well overheat.

NORM BRAKE FAIL
 Indicates loss of normal (pedal) braking.

PLT BRAKE FAULT
 Indicates one or both pilot brake pedals not available.

BRAKE 50% DGRADED
 Indicates loss of two symmetric brakes.

GEAR DISAGREE
 Indicates that the landing gear is not at the selected position within 28 seconds of command, or any gear unsafe.

"NORMAL BRAKE FAIL"

PARK BRAKE ON
 Indicates that the parking brake is on and the engines are in takeoff range.

BRAKE OVHT
 Indicates one or more hot brakes resulting in wheels at fuse plug release temperature.

CPLT BRAKE FAULT
 Indicates one or both copilot brake pedals not available.

L (R) INBD or L (R) OUTBD BRAKE FAIL
 Indicates either one of the left/right inboard or outboard brakes have

UNCOMMANDED BRAKE
 Indicates that the brake is on when the pedals are not applied.

PARK/EMER BRAKE ON
 Indicates that the parking brake is on during approach (gear down).
EICAS MESSAGES (Cont)

INBD (OUTBD) BRK LO PRESS
Indicates either the inboard or outboard brake supply is depleted.

L (R) MAIN GEAR DOOR
Indicates either the left or right main gear door is not closed.

NOSE STEER FAIL
Indicates loss of nosewheel steering operation: nosewheel free-casters.

BRAKE FAULT
Indicates loss of redundancy in the brake control system.

WOW FAULT
Indicates a fault within the LGECU.

WOW FAIL
Indicates loss of WOW function.

NOSE DOOR
Indicates nose door in the not closed position.

GEAR SYS FAIL
Indicates that the normal gear operation is not available.

AUTOBRAKE FAIL
Indicates that the auto braking system is not available.

GEAR SYS FAULT
Indicates loss of redundancy for downlock indications or EICAS communication.

BRAKE TEMP
Indicates that one or more brake temperature indicators are in the white range.
EICAS MESSAGES (Cont)

- **PARK/EMER BRAKE ON**: Indicates that the parking brake is on with the airplane stopped.
- **AUTOBRAKE LOW**: Indicates that the autobrake is armed for low deceleration braking.
- **AUTOBRAKE HI**: Indicates that the autobrake is armed for high deceleration braking.
- **GEAR HORN MUTED**: Indicates that the gear has been activated and the mute switch is selected.
- **NOSE STEER OFF**: Indicates that the NOSE STEER switch is in the OFF position.
- **AUTOBRAKE MED**: Indicates that the autobrake is armed for medium deceleration braking.
EMS CIRCUIT PROTECTION

CIRCUIT BREAKER - SYSTEM 2/2
- GEAR
- HYD
- ICE
- IND/RECORD
- LIGHTS
- NAV
- OIL
- OXYGEN
- THRUST REV

CB - LDG GEAR SYSTEM 1/2
- BRAKE CTL CH A DC 1 IN
- BRAKE CTL CH B BATT IN
- GEAR CTL A PWR 1 DC 1 IN
- GEAR CTL A PWR 2 BATT IN
- GEAR CTL B PWR 1 DC 2 IN
- GEAR CTL B PWR 2 BATT IN

CB - LDG GEAR SYSTEM 2/2
- NOSE STEER PWR 1 DC 1 IN
- NOSE STEER PWR 2 DC 2 IN