CFM56 - 3

... ONE TAKE OFF
EVERY
8 SECONDS !!!
The CFM56-3 engine control system consists of both:

- HYDRO MECHANICAL UNIT
- ELECTRONIC UNIT
• **MEC** ⇒ Main Engine Control

Automatically schedules:

- **WF** (Fuel Flow)
- **VBV** (Variable Bleed Valve)
- **VSV** (Variable Stator Vane)
- **HPTCCV** (High Pressure Turbine Clearance Control Valve)
• **PMC** ⇒ Power Management Control
 - Provide FAN scheduling
CONTROL SYSTEM SCHEMATIC
CONTROL SYSTEM SCHEMATIC

(Cont’d)

N1 ➔ Fan Speed
N2 ➔ Core Speed
WF ➔ Fuel Flow
TMC ➔ Torque Motor Current
PS12 ➔ Fan Inlet Static Air Pressure
PS3 ➔ Compressor Discharge Pressure
CBP ➔ Compressor Bleed Pressure
T12 ➔ Fan Inlet Total Air Temperature
T2.5 ➔ HPC Inlet Air Temperature
T2 ➔ Fan Inlet Temperature
TC1 ➔ Turbine Clearance Control 5Th Stage
TC2 ➔ Turbine Clearance Control 9Th Stage
TC3 ➔ Turbine Clearance Control Timer Signal
ENGINE STATIONS

- 25 HP Compressor Inlet
- 12 Secondary Flow Inlet
- 2 Primary Flow Inlet
- 3 HP Compressor Discharge
- 49.5 Stage 2 LPT Inlet
MEC OPERATION

- MEC is an hydraulic mechanical device using fuel pressure to work.
- A device monitors fuel pressure at low flow conditions for MEC servo operation.
MEC PURPOSE

• The **MEC**’s job is divided in 2 tasks:

 MAIN TASKS:
 – Speed governing system
 – Fuel limiting system
 – Idling system

 ADDITIONAL TASKS:
 Control functions to optimise engine performance
 – VBV
 – VSV
 – HPTCCV
SPEED GOVERNING SYSTEM

N2 demand

PS12

T2

N2 actual

Fuel

FMV

Wf

MEC
FUEL LIMITING SYSTEM

- During transient operation, the speed governing system could change the fuel flow beyond the safe limits.
- The purpose of the fuel limiting system is to define and impose correct engine fuel flow limits during rapid transients:
 - ACCELERATIONS
 - DECELERATIONS
 - STARTS
FUEL LIMITING SYSTEM (Cont’d)
HIGH IDLE:

- Used only when anti-icing is selected or if a flying aircraft has flaps configuration > 15°.
- It is optimised to provide rapid recovery of takeoff thrust if required.

LOW IDLE:

- Ground idle: Provide adequate taxi thrust while minimising noise, fuel consumption and braking effort.
- Flight idle: Scheduled to minimise fuel consumption.
IDLING SYSTEM (Cont’d)

- MEC
- DESIRED SPEED SETTING
 - N2 demand
 - PS12
 - T2
 - N2 actual
- AIRCRAFT CONFIGURATION
 - PLA IDLE: Yes / NO
- FUEL LIMITING SYSTEM
 - T2.5
 - PS3
 - N2
 - CBP
 - Fuel
 - Wf
- MEC
- PM
- FMV
- Wf
- Fuel
MEC ADDITIONAL TASKS

VBV SYSTEM

- VBV system positions 12 valves by hydraulic pressure acting upon a fuel gear motor.

- The fuel pressure is scheduled by the MEC.

- VBV feedback cable is positioned to provide the MEC with a current VBV position to compare with the desired position.
MEC ADDITIONAL TASKS (Cont’d)

VBV SYSTEM (Cont’d)
MEC ADDITIONAL TASKS (Cont’d)

VBV PURPOSE

As the Compressor is optimised for ratings close to maximum power engine operation has to be protected during deceleration or at low speed:

Without VBV installed:
At Deceleration or Low speed
⇒ Booster Outlet Airflow ↓↓ much more than Booster Pressure Ratio
⇒ LPC stall margin reduced

With VBV installed:
At Deceleration or Low speed
⇒ VBV fully open
⇒ Booster Pressure Ratio ↓↓ but same Booster Outlet Airflow
⇒ Plenty of LPC stall margin
VBV PURPOSE (Cont’d)

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Acceleration Schedule</td>
<td>5</td>
<td>If VBV not closed</td>
</tr>
<tr>
<td>2</td>
<td>Operating Line</td>
<td>3</td>
<td>Deceleration Schedule</td>
</tr>
<tr>
<td>4</td>
<td>If VBV not open</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Low speed or Deceleration ⇒ VBV OPEN
- High speed or acceleration ⇒ VBV CLOSED
MEC ADDITIONAL TASKS (Cont’d)

VSV SYSTEM

- VSV system changes the angle of the HP Compressor IGV and N° 1,2 and 3 stator stages according to the MEC computation.
- MEC directs a resulting high pressure fuel flow to the dual VSV actuators.
- The actuators mechanically position the VSV.
- A feedback cable provides the VSV position to the MEC.
- A comparison is performed between schedule requirements and actual VSV position to determine the need to continue actuator control or not.
MEC ADDITIONAL TASKS (Cont’d)

VSV SYSTEM (Cont’d)
MEC ADDITIONAL TASKS (Cont’d)

VSV SYSTEM (Cont’d)

Diagram of VSV System with various components labeled, including PLA, FUEL, VSV, and MEC.
VSV PURPOSE

- The Compressor is optimised for ratings close to maximum power.
- Engine operation has to be protected during deceleration or at low speed.
- VSV system position HPC Stator Vanes to the appropriate angle of incidence.

- VSV optimise HPC efficiency.
- VSV improve stall margin for transient engine operations.
MEC ADDITIONAL TASKS (Cont’d)

VSV PURPOSE (Cont’d)

TYPICAL HPC FLOW CHART

1. Acceleration Schedule
2. If VSV not open
3. Deceleration Schedule
4. Operating Line

- Low speed or Deceleration ⇒ VSV CLOSED
- High speed or acceleration ⇒ VSV OPEN
CLEARANCE CONTROL

• Operating tip clearance in the core engine are of primary importance. They determine:

 Steady state efficiencies:
 ⇒ Fuel consumption

 Transient engine performance:
 ⇒ Peak gas temperature
 ⇒ Compressor stall margin
CLEARANCE CONTROL (Cont’d)

- **Clearance Control** in the CFM56 engine is accomplished by a combination of 3 mechanical designs:

 - **Passive control:**
 - Using materials in the compressor aft case with low coefficient of thermal expansion.

 - **Forced cooling:**
 - Using Low Pressure Booster discharge cooling air for compressor and turbine.

 - **Automatic control:**
 - HPTCC VALVE and HPTCC TIMER are used to control the tip clearance between HPT blades and stationary tip shrouds.
Automatic Control is using Bleed Air from 5th and 9th stages of HPC to either cool or heat the HPT shroud.
HPTCCV ACTUATION (Cont’d)

• During flight:

- Air selection is determined by fuel pressure signals sent from the MEC to the TIMER.

- The TIMER sends fuel pressure signals without change to actuate the HPTCC VALVE.

- The selected bleed air is ducted to a manifold surrounding the HPT SHROUD.
• During takeoff:

- The **TIMER** overrides the normal MEC operation of the valve.

- It is sequencing a transient air schedule over a specified time period to maintain a more nearly constant HPT blade tip clearance during the period of HPT Rotor/Stator thermal stabilisation.

- This maintain Turbine efficiency and decreases transient EGT overshoot.

- A lockout valve permits the TIMER to actuate only once per engine cycle. (i.e. from start to shut down)
HPTCCV ACTUATION (Cont’d)

EGT

5° to 10°C
Warm Engine

15° to 20°C
Cold Engine

□ Without Timer
○ With Timer
• The TIMER SEQUENCE:

- Starting Reference Point is when the engine reach 95% N2.

- Then:
 - 0 to 8 s ⇒ No air
 - 8 to 152 s ⇒ 5Th stage air
 - 152 to 182 s ⇒ 5Th + 9Th stage air
INPUT POWER

Cockpit Sw:
⇒ PMC On / Off

INPUT SIGNALS:
⇒ N1, T12, PLA

OUTPUT SIGNALS:
⇒ FOR MEC TORQUE MOTOR

MONITOR CONNECTION

PS12
In a high bypass engine, total thrust is more accurately controlled by controlling N1 speed.

FAN is 80% of the POWER!

This is accomplished by varying N2 speed to reach the accurate N1 speed.
The main goal of the PMC is to make pilot’s job more comfortable.

PMC is performing automatically 3 corrections:

- N1 Vs ALTITUDE
- N1 Vs PRESSURE
- N1 Vs TEMPERATURE
N1 Vs ALTITUDE

- As the **altitude is increasing**, if you want to keep a steady thrust %, you need to **increase N1**.

PMC ON
- PMC increase N1
- ⇒ PLA remain unchanged.

PMC OFF
- The PILOT must increase N1
- ⇒ PLA change.
• As the pressure is decreasing, if you want to keep a steady thrust %, you need to increase N1.

PMC ON
- PMC increase N1
- ⇒ PLA remain unchanged.

PMC OFF
- The PILOT must increase N1
- ⇒ PLA change.
At takeoff, to get the max thrust (flat rated thrust) as temperature increases, N1 and EGT must also increase. But mechanical limitations impose a limit which is a temperature called: “Corner Point” or “Flat Rated Temperature”.

Beyond it:

- **PMC ON**
 - PMC is limiting N1 and EGT

- **PMC OFF**
 - The PILOT must limit N1 and EGT
PMC OPERATION (Cont’d)

• PMC efficiency start at 50% N1 and is fully efficient at or above 70% N1.

• PMC trims MEC to maintain the commanded thrust

• Schedule N1 is compared to actual N1. The error signal generates from the PMC an Output Current (TMC) to a torque motor mounted on the MEC. The torque motor changes Fuel Flow (Wf). ⇒ N2 and N1 change.
PMC OPERATION (Cont’d)

ACTUAL N1

SCHEDULE N1

PMC

N1 / Z CORRECTION

N1 / P CORRECTION

N1 / T CORRECTION

ENGINE

MEC

TORQUE MOTOR

PMC on / off

PLA

Wr
THE END

THANKS FOR YOUR ATTENTION!