SLATS or FLAPS
JAMMED
A320 Sequence

- Why flaps or slats can be jammed
- How to detect the failure
- First action to take
- “ECAM actions” + Status
- Procedure
Why flaps or slats can be jammed

- Wing Tip Brake activation
- Dual Hydraulic failure
- SFCC failure
- Handle inop
- ...etc.
A320 Different Failures

- Failure examples:
 - Slats locked
 - Flaps fault
First action to take

Pull & Select appropriate speed!
A320 “ECAM actions”
A320 “ECAM actions” + Status
Procedure

In Flight

Approach preparation

Approach

Go Around

Landing
In flight

* First read the VLS CONF FULL value on the PERF APP page to determine VAPP (or use QRH 2.41). *
* Then, select CONF 3 on the PERF APP page.
Approach Preparation

LANDING WITH SLATS OR FLAPS JAMMED

- LANDING CONF DETERMINE (page 2.25)

- Repeat the following until landing configuration is reached :
 - SPEED SEL VFE NEXT = 5 KT

 Decelerate towards VFE NEXT = 5 kt but not below VLS. In case of turbulence, to avoid VFE
 exceedance, the pilot may decide to decelerate to a lower speed, but not below VLS.

 NOTE : The autopilot may be used down to 500 feet AGL. As it is not tuned for the
 abnormal configurations, its behaviour can be less than optimum and must be
 monitored.

 - Approach with A/THR and selected speed is recommended.
 - OVERSPEED warning and VLS displayed on PFD are computed according to the
 actual flaps/slots position.
 - VFE and VFE NEXT are displayed on PFD according to the FLAPS lever position.
 - If not displayed use the placard speeds.
 - If VLS is greater than VFE NEXT (overweight landing case), the flaps lever can be
 set in the required next position while the speed is reduced to follow VLS
 reduction as surfaces extend. The VFE warning threshold should not be triggered.
 In this case, disconnect the A/THR. A/THR can be reengaged when the landing
 configuration is established.

 As speed reduces through VFE NEXT :
 - FLAPS LEVER ONE STEP DOWN

 - When landing configuration is established :
 - DECELERATE TO CALCULATED APPROACH SPEED IN FINAL APPROACH

Example
Approach

It is recommended to fly a stabilized approach.

No use of autopilot below 500 ft.
Go Around

When no more SRS, select appropriate speed

If diversion, consider fuel consumption.

<table>
<thead>
<tr>
<th>MAX SPEED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flaps (1)</td>
</tr>
<tr>
<td>S = 0</td>
</tr>
<tr>
<td>0 < S ≤ 1</td>
</tr>
<tr>
<td>1 < S ≤ 3</td>
</tr>
<tr>
<td>S > 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>APPR SPD and LDG DIST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flaps (1)</td>
</tr>
<tr>
<td>S = 0</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>0 < S < 1</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1 ≤ S ≤ 3</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>S > 3</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

(1) Flaps position displayed on upper ECAM display
(2) VREF + 5 if slats are in CONF 3
Landing

GROUND CLEARANCE DIAGRAM

ROLL: 6.3°
PITCH: 16°

ROLL: 8.6°
PITCH: 13.6°

ROLL: 14.8°
PITCH: 14.5°

ROLL: 12°
PITCH: 13.1°

* REAR FUSELAGE AND LANDING GEAR

* STABILIZER AND LANDING GEAR

* AILERON AND LANDING GEAR

* REVERSE LANDING GEAR NACELLE

* CONTACT POINTS OF AIRCRAFT ON GROUND

TOUCHDOWN ON ONE MAIN LANDING GEAR

--- SCHOCK ABSORBER NOT COMPRESSED

--- SCHOCK ABSORBER FULLY COMPRESSED
A320 Example

Slats locked at 0:
- Landing Configuration: 3
- Landing Speed: VREF + 25
- Landing Distance: Multiplied by 1.3

The aircraft is normally in the following configuration:

Flaps Lever Position 1
A320 Example

Procedure:

- VFE NEXT - 5 Kts is selected
A320 Example

Procedure:

- VFE NEXT - 5 Kts is selected
- Speed decreases
A320 Example

Procedure:

- VFE NEXT - 5 Kts is selected
- Speed decreases
- When below VFE NEXT:
 ⇒ Select Flaps 2
A320 Example

Procedure:
- VFE NEXT - 5 Kts is selected
- Speed decreases